scholarly journals In Vitro Culture of Immature Zygotic Mango Embryos and Plantlet Development

HortScience ◽  
2011 ◽  
Vol 46 (11) ◽  
pp. 1528-1532 ◽  
Author(s):  
Juan Bernardo Pérez-Hernández ◽  
María José Grajal-Martín

In vitro culture of immature embryos may assist mango breeding in the production of hybrid plant material. However, zygotic embryo culture techniques have not been successfully developed for mango. To recover in vitro zygotic plants through embryo culture, ‘Lippens’ and ‘Keitt’ were used as a source of model immature embryos. Excised embryos were incubated in a liquid maturation medium to test different culture systems and media composition. Subsequent germination allowed for the recovery of complete in vitro plantlets. Variables included during artificial embryo maturation, independently or through paired interactions, significantly affected all the parameters measured for embryo development and characterization of the plantlets. Main effects of culture system (i.e., static versus agitation) and coconut water supply (20%) were responsible for up to 85.5% of total treatment variation. Direct and inverse interactions observed between culture system and either coconut water supplement or sucrose content (45 or 60 g·L−1) contributed to define the best combination of factors to improve embryo growth and plant formation. Complete plantlets could be obtained at a frequency above 83% for both cultivars at the end of the in vitro phase at a developmental stage that allowed acclimatization to greenhouse conditions.

2014 ◽  
Vol 29 (4) ◽  
pp. 457-469 ◽  
Author(s):  
Federica Riva ◽  
Claudia Omes ◽  
Roberto Bassani ◽  
Rossella E Nappi ◽  
Giuliano Mazzini ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
F Du ◽  
R Li ◽  
Q Zhang ◽  
W Wang

Abstract Study question what is the source, prevalence, and influence of microbial contamination on in vitro fertilization (IVF) and embryo transfer (ET) cycles? Summary answer Microbial contamination mainly occurs on Day 2, most caused by Escherichia coli carried with semen. ICSI could prevent contamination effectively and get good clinical outcomes. What is known already Microbial contamination occurs in IVF-ET system occasionally, which is hard to stop happening. The IVF culture system and laboratory environment, the patients’ follicular fluid and semen are not absolutely sterile, while the antibiotics in culture medium isn’t effective for all microbe types, and the artificial operations may bring in microbes. Generally, microbial contamination leads to degradation of embryos, reduction the number of embryos available, and infection of female reproductive tract, which would increase the cost of patients’ time, money, and bring psychological damages. A better understanding of embryo contamination in IVF culture system is of added value. Study design, size, duration A total of 29583 IVF-ET cycles were enrolled in this prospective observational study, from January 2010 to December 2020, included 70 microbial contamination cycles discovered in Day1-Day3 (D1-D3) of in vitro culture. Follicular fluid and semen saved on oocyte retrieval day, and culture medium contaminated were examined and identified for microorganisms at each contamination cycle. Participants/materials, setting, methods Compared the contamination rate of different insemination methods (IVF/ICSI/IVF+ICSI), different in vitro culture days (D1-D3), and different samples examination (follicular fluid, semen, culture medium) respectively, identified the source of microorganism types, compared the IVF culture outcomes and clinical outcomes between total contamination group (TC group, 42 cases) and partial contamination group (PC group, 28 cases). Main results and the role of chance A total of 70 microbial contamination cases occurred in 29583 oocyte retrieving cycles (0.24%), and it was observed only in IVF embryos but never in ICSI (Intracytoplasmic sperm injection) embryos. 38 contamination cases occurred on D2 with a highest ratio (54.3%) compared to D1 (32.9%) and D3(12.9%); Compared with follicular fluid, semen was the main cause inducing contamination from D1 to D3, and Escherichia coli in semen and culture medium, Enterococcus faecalis in follicular fluid proved to be the most common sources. Compared with TC group, the PC group showed a lower rate of No-available embryos (21.4% vs 81.0%) and a higher rate of blastocyst formation (41.2% vs 28.6%), In addition, the clinical pregnancy rate of PC group was higher than that of TC group in both fresh and frozen-thawed embryo transfer cycles (31.3% vs 16.7%, 38.5% vs 0.0%). Limitations, reasons for caution Further study is still necessary to better understand the sources that induce microbial contamination embryos, and more efficient methods are required to remove the microbes on these contaminated embryos so as better develop and manage a sterile micro-environment for successful embryo growth. Wider implications of the findings: The differential embryonic microbe types associated to different IVF culture and clinical outcomes in patients undergoing IVF-ET might have profound implications for understanding the microbial sources and making a better management of IVF culture system. Trial registration number Not applicable


2016 ◽  
Vol 65 (5) ◽  
pp. 516-519 ◽  
Author(s):  
Tessa Carrau ◽  
Liliana Machado Ribeiro Silva ◽  
David Pérez ◽  
Rocio Ruiz de Ybáñez ◽  
Anja Taubert ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
E Mestres ◽  
Q Matia-Algué ◽  
A Villamar ◽  
M García-Jiménez ◽  
A Casals ◽  
...  

Abstract Study question Do commercial mineral oil brands differ in their capacity to stabilize the human embryo culture system, and is this related to the oil’s viscosity? Summary answer While the oils’ viscosity only had minor effects on temperature maintenance, it showed a direct correlation with the stability of pH and osmolality during culture. What is known already Mineral oil is a key component of the in vitro embryo culture system, which stabilizes temperature, pH and osmolality of the media during culture. Its use has been implemented worldwide for several decades and many manufacturers currently produce and commercialize oil intended for human embryo culture. Unfortunately, oil remains as one of the less characterized products in the IVF laboratory due to a lack of standardized nomenclature, production and testing. With differing physico-chemical properties, such as viscosity, oils produced by various manufacturers could behave differently to the same culture conditions and, thus, its use may need to be adjusted accordingly. Study design, size, duration Viscosity was quantified in three high-viscosity (H-V) and three low-viscosity (L-V) oils with a viscosity-meter. The required time for media’s pH to equilibrate using each oil was studied, as well as its subsequent stability outside the incubator for 30min. In-drop temperature was assessed during 15min when taking a dish outside the incubator, and again when putting it back. Additionally, each oil’s capacity to avoid media evaporation was studied with daily osmolality measurements during 7 days. Participants/materials, setting, methods pH equilibration was measured with a continuous pHmeter (Log&Guard, Vitrolife) in 4-well dishes prepared with 600µl of medium and 500µl of oil. For the other experiments, 35mm dishes with 4ml of oil and 20µl media droplets were used. pH stability was assessed after 0, 15 and 30min outside the incubator with a blood-gas-analyzer (epoc,SiemensHelthineers). A fine-gauge thermocouple was used to measure in-drop temperature loss/recovery. Daily osmolality readings were taken with a vapor pressure osmometer (Vapro5600,Wescor). Main results and the role of chance The selected oil samples had a viscosity of 115, 111, 52, 22, 18, and 12cP. The medium’s pH took approximately 12h to completely equilibrate under H-V oils, while it took less than 4h in L-V. Similarly, the rise in pH after 30min on a heated stage outside of the incubator with room atmosphere was 0.03, 0.04, 0.06, 0.13, 0.17, and 0.26, respectively. Dishes were taken out of the incubator and placed on a heated surface. In the first five minutes, the in-drop temperature loss ranged between –0.22 and –0.13oC/min, with no significant differences observed between oil types. However, temperature plateaued at a significantly higher value in L-V oils (36.5oC), compared to H-V brands (36.25–36.1oC; p = 0.0005). By contrast, all samples followed a similar pattern when the dishes were returned to the benchtop incubator, with temperature taking around 7 minutes to completely recover. Some media evaporated in all oil groups during the 7-day culture in a dry benchtop incubator. The linear regression performed to compare the evaporation rate between groups showed a statistically significant correlation between oil viscosity and the rate of evaporation (p < 0.0001), with an osmolality rise ranging between +2.55mmol/kg/day in the most viscous oil and +6.29mmol/kg/day in the least viscous. Limitations, reasons for caution While the selected oils for this study represent a wide range of options in the market, future projects could widen this selection and include additional tests, such as optimized bioassays. Results may vary between centers, and thus each laboratory should test and optimize their culture system with their own settings. Wider implications of the findings: Different oil brands have shown differing physico-chemical properties that have a direct effect on the culture system and the stability of several culture conditions. These results may be of major importance to adapt the settings and methodologies followed in each IVF laboratory according to the type of oil being used. Trial registration number Not applicable


3 Biotech ◽  
2020 ◽  
Vol 10 (3) ◽  
Author(s):  
Jing Yang ◽  
Xiaozeng Yang ◽  
Bin Li ◽  
Xiayang Lu ◽  
Jiefang Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document