follicular fluid
Recently Published Documents


TOTAL DOCUMENTS

3077
(FIVE YEARS 509)

H-INDEX

85
(FIVE YEARS 9)

Author(s):  
Andreea Carp-Veliscu ◽  
Claudia Mehedintu ◽  
Francesca Frincu ◽  
Elvira Bratila ◽  
Simona Rasu ◽  
...  

As the coronavirus pandemic is far from ending, more questions regarding the female reproductive system, particularly fertility issues, arise. The purpose of this paper is to bring light upon the possible link between COVID-19 and women’s reproductive health. This review emphasizes the effect of SARS-CoV-2 on the hormones, endometrium and menstrual cycle, ovarian reserve, follicular fluid, oocytes, and embryos. The results showed that endometrial samples did not express SARS-CoV-2 RNA. Regarding the menstrual cycle, there is a large range of alterations, but they were all reversible within the following months. The ovarian reserve was not significantly affected in patients recovering from both mild and severe infection in most cases, except one, where the levels of AMH were significantly lower and basal follicle-stimulating hormone (FSH) levels were increased. All COVID-19 recovered patients had positive levels of SARS-CoV-2 IgG in the follicular fluid. The amount of retrieved and mature oocytes and the fertilization rate were unharmed in three studies, except for one study, where the quantity of retrieved and mature oocytes was reduced in patients with higher levels of SARS-CoV-2 antibodies. The numbers of blastocysts, top-quality embryos, and euploid embryos were affected in most of the studies reviewed.


Author(s):  
Elnur Babayev ◽  
Francesca E Duncan

Abstract The ovary is the first organ to age in humans with functional decline evident already in women in their early thirties. Reproductive aging is characterized by a decrease in oocyte quantity and quality which is associated with an increase in infertility, spontaneous abortions, and birth defects. Reproductive aging also has implications for overall health due to decreased endocrinological output. Understanding the mechanisms underlying reproductive aging has significant societal implications as women globally are delaying childbearing and medical interventions have greatly increased the interval between menopause and total lifespan. Age-related changes inherent to the female gamete are well-characterized and include defects in chromosome and mitochondria structure, function, and regulation. More recently, it has been appreciated that the extra-follicular ovarian environment may have important direct or indirect impacts on the developing gamete, and age-dependent changes include increased fibrosis, inflammation, stiffness, and oxidative damage. The cumulus cells and follicular fluid which directly surround the oocyte during its final growth phase within the antral follicle represent additional critical local microenvironments. Here we systematically review the literature and evaluate the studies that investigated the age-related changes in cumulus cells and follicular fluid. Our findings demonstrate unique genetic, epigenetic, transcriptomic, and proteomic changes with associated metabolomic alterations, redox status imbalance, and increased apoptosis in the local oocyte microenvironment. We propose a model of how these changes interact, which may explain the rapid decline in gamete quality with age. We also review the limitations of published studies and highlight future research frontiers.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Qinling Zhu ◽  
Yue Yao ◽  
Lizhen Xu ◽  
Hasiximuke Wu ◽  
Wangsheng Wang ◽  
...  

Abstract Background Insulin resistance (IR) contributes to ovarian dysfunctions in polycystic ovarian syndrome (PCOS) patients. Serum amyloid A1 (SAA1) is an acute phase protein produced primarily by the liver in response to inflammation. In addition to its role in inflammation, SAA1 may participate in IR development in peripheral tissues. Yet, expressional regulation of SAA1 in the ovary and its role in the pathogenesis of ovarian IR in PCOS remain elusive. Methods Follicular fluid, granulosa cells and peripheral venous blood were collected from PCOS and non-PCOS patients with and without IR to measure SAA1 abundance for analysis of its correlation with IR status. The effects of SAA1 on its own expression and insulin signaling pathway were investigated in cultured primary granulosa cells. Results Ovarian granulosa cells were capable of producing SAA1, which could be induced by SAA1 per se. Moreover, the abundance of SAA1 significantly increased in granulosa cells and follicular fluid in PCOS patients with IR. SAA1 treatment significantly attenuated insulin-stimulated membrane translocation of glucose transporter 4 and glucose uptake in granulosa cells through induction of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression with subsequent inhibition of Akt phosphorylation. These effects of SAA1 could be blocked by inhibitors for toll-like receptors 2/4 (TLR 2/4) and nuclear factor kappa light chain enhancer of activated B (NF-κB). Conclusions Human granulosa cells are capable of feedforward production of SAA1, which significantly increased in PCOS patients with IR. Excessive SAA1 reduces insulin sensitivity in granulosa cells via induction of PTEN and subsequent inhibition of Akt phosphorylation upon activation of TLR2/4 and NF-κB pathway. These findings highlight that elevation of SAA1 in the ovary promotes the development of IR in granulosa cells of PCOS patients.


2022 ◽  
Vol 34 (2) ◽  
pp. 289
Author(s):  
J. Feugang ◽  
G. Ishak ◽  
T. Pechan ◽  
O. Pechanova ◽  
M. Gastal ◽  
...  

Author(s):  
Liese Boudry ◽  
Wafaa Essahib ◽  
Ileana Mateizel ◽  
Hilde Van de Velde ◽  
Deborah De Geyter ◽  
...  

2021 ◽  
Author(s):  
Yuanyuan Zhao ◽  
Shuhong Pan ◽  
Yunying Li ◽  
Xiaohua Wu

Abstract Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorders disease in women of reproductive age. The anovulation caused by abnormal follicular development is still the main characteristic of infertile patients with PCOS. Granulosa cells (GCs), an important component of follicular microenvironment, affect follicular development through GCs dysfunction. Increasing evidence indicates that exosomal miRNAs derived from follicular fluid (FF) of patients play critical roles during PCOS. However, which and how follicular fluid derived exosomal miRNAs play a pivotal role in controlling granulosa cells function and consequently follicular development remain largely unknown. Herein, we showed that miR-143-3p is highly expressed in follicular fluid exosomes of PCOS patients and can be delivered into granulosa cells. Furthermore, the functional experiments showed that the translocated miR-143-3p promoted granulosa cell apoptosis, which are important in follicle development. In terms of mechanism, we demonstrated that BMPR1A was identified as a direct target of miR-143-3p. Overexpression of BMPR1A reversed the effects of exosomal miR-143-3p on GCs apoptosis and proliferation by activating Smad1/5/8 signaling pathway. These results demonstrate that miR-143-3p-containing exosomes derived from PCOS follicular fluid promoted granulosa cell apoptosis by targeting BMPR1A and blockading Smad1/5/8 signaling pathway. Our findings provide a novel mechanism underlying the roles of exosomal-miRNA in follicular fluid of PCOS and facilitate the development of therapeutic strategies for PCOS.


Sign in / Sign up

Export Citation Format

Share Document