scholarly journals Plant Population Affects Pumpkin Yield Components

2004 ◽  
Vol 14 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Kent E. Cushman ◽  
Thomas E. Horgan ◽  
David H. Nagel ◽  
Patrick D. Gerard

Pumpkins (Cucurbita pepo, C. moshata) were grown in northern Mississippi during 2000 and 2001 for the purpose of more narrowly defining plant population recommendations for commercial production in the humid southeastern United States. Four plant populations were examined for `Aspen': 908, 1361, 2045, and 3068 plants/acre (2244, 3363, 5053, and 7581 plants/ha, respectively) and for `Howden Biggie': 605, 908, 1361, and 2045 plants/acre (1495, 2244, 3363, 5053 plants/ha, respectively). Plant populations were adjusted by varying in-row spacing while holding between-row spacing constant at 8 ft (2.4 m). Plant population significantly affected yield of `Aspen' and `Howden Biggie'. Linear and quadratic terms were significant for `Aspen', with maximum yield (ton/acre and fruit/acre) for the quadratic relationship occurring at about 2045 plants/acre. In contrast, yield of `Howden Biggie' decreased significantly (ton/acre) and nonsignificantly (fruit/acre) in a linear relationship as plant population increased from 605 to 2045 plants/acre. Plant population significantly affected fruit weight and size. As plant population increased, weight and size decreased slightly but significantly in a linear relationship for `Aspen' (lb/fruit and inch3/fruit) and `Howden Biggie' (lb/fruit). The quadratic relationship for `Howden Biggie' (inch3/fruit) was significant and the minimum value occurred at about 1361 plants/acre. Plant population significantly affected pumpkin yield components associated with plant productivity. As plant population increased, number and weight of fruit per plant decreased sharply in a quadratic relationship for `Aspen' (lb/ plant and fruit/plant) and `Howden Biggie' (lb/plant). The linear relationship for `Howden Biggie' (fruit/ plant) also decreased significantly. At the highest plant populations for `Howden Biggie', 40% of the plants did not produce marketable pumpkins. In conclusion, recommendations of optimum plant populations for a semi-vining cultivar such as `Aspen' should be centered on about 2045 plants/acre. Published recommendations from Kentucky appear sound, advocating plant populations within the range of 1360 to 2720 plants/acre (3361 to 6721 plants/ha). For a vining cultivar such as `Howden Biggie', recommendations can be as low as 605 plants/acre. Published recommendations from Kentucky and Georgia, along with those published in the Vegetable Crop Guidelines for the Southeastern U.S., advocate plant populations for vining cultivars of approximately 725 to 1465 plants/acre (1790–3620 plants/ha). Our results with `Howden Biggie', a cultivar that produces larger pumpkins than most other vining cultivars grown for the wholesale market, indicate that producers of vining cultivars should use plant populations from the lowest values of these recommendations or use even lower values. Our results also indicate that growers can control size and weight of pumpkins by varying plant population, with increasing populations resulting in a slight decrease of size and weight.

HortScience ◽  
1993 ◽  
Vol 28 (8) ◽  
pp. 796-798 ◽  
Author(s):  
Charles A. Powell ◽  
Peter J. Stoffella ◽  
Harry S. Paris

Zucchini squash (Cucurbita pepo L.) fruit yield and the incidence of sweetpotato whitefly (SPWF) [Bemisia tabaci (Gennadius)], squash silver leaf (SSL) disorder, and zucchini yellow mosaic virus (ZYMV) were measured during Spring and Fall 1991 in experiments containing various plant populations. In both experiments, as the within-row spacing increased from 30.5 to 76.2 cm or the number of plants per hill decreased from three to one, the number of marketable fruit per hectare decreased, and the marketable fruit per plant increased. Adult SPWF populations increased with decreased within-row spacing in the spring but not the fall experiment. The incidence of SSL or ZYMV infection was not affected by plant population in either experiment. The results indicate that increasing zucchini squash plant population can increase yield without affecting the incidence of SSL or ZYMV.


1978 ◽  
Vol 14 (3) ◽  
pp. 239-244 ◽  
Author(s):  
W. Godfrey-Sam-Aggrey

SUMMARYEffects of plant population on mean yield and yield components of 2-year sole cassava crops were studied on Njala upland soils of Sierra Leone in two experiments. Increasing plant population of multi-shoot Cocoa cassava over 7000/ha decreased all the parameters studied except top/root weight ratio, which increased. The observed effects were attributed to competition for environmental resources, since area of land/plant unit decreased as plant population increased. The relations between plant populations and yields of fresh root and cortex dry matter were asymptotic, indicating that the respective yields were products of the vegetative phase of cropping.


2021 ◽  
Vol 37 ◽  
pp. e37042
Author(s):  
Marcelo De Almeida Silva ◽  
Ana Carolina De Santana Soares ◽  
Melina Rodrigues Alves Carnietto ◽  
Alexandrius De Moraes Barbosa

Studies addressing the interaction of different spatial arrangement in soybean are needed in order to achieve management that leads to higher grain yield associated with rational seed use. The objective of this work was to evaluate the yield components and productivity of an undetermined growth type soybean as a function of different row spacing and plant densities. The treatments consisted of three row spaces (0.25, 0.35 and 0.45 m) and three plant population densities (30, 40 and 50 plants/m²). There was no interaction of row spaces and plant population on soybean yield. Regarding the overall spacing average, the grain yield of the population of 30/m² plants was higher than the productivity of the populations of 40 and 50/m² plants. The largest populations reduce plant sizes due to greater competition between plants. In addition, smaller populations promote higher individual plant yields due to the increase components of the production. This characteristic is defined as the ability of the plant to change its morphology and yield components in order to adapt to the conditions imposed by the spatial arrangement.


1962 ◽  
Vol 2 (4) ◽  
pp. 54 ◽  
Author(s):  
LJ Phillips ◽  
MJT Norman

In 1957-58 and 1958-59, Virginia Bunch and Natal Common peanuts were sown on Tippers clay loam at Katherine, N.T., in a multifactorial experiment at two inter-row spacings (2 ft and 3 ft), four plant populations (10, 20, 40 and 80 thousand per acre) and two dates. In 1960-61, Natal Common only was sown at the same inter-row spacings, at two dates, and at populations of 10, 20, 30 and 40 thousand per acre. Over two seasons, the yield of Virginia Bunch kernels was not significantly influenced by variation in population, though the yield of hay was 42 per cent higher at 80,000 plants per acre than at 10,000 plants per acre. Kernel yields from 2 f t rows were 14 per cent higher than from 3 f t rows. In the first two seasons, the yield of Natal Common kernels was lower at 80,000 plants per acre than at 40,000 plants per acre. Over three seasons, maximum kernel and h g yields were achieved at 40,000 plants per acre ; the kernel yield at this population was 35 per cent greater than at 10,000 plants per acre. With early-planted Natal Common, 2.ft rows gave an 11 per cent higher yield of kernels than 3 f t rows, but with later planting there was no significant effect of inter-row spacing. The optimum economic seeding rates were estimated approximately as 30 lb an acre for Virginia Bunch and 45 lb an acre for Natal Common.


1989 ◽  
Vol 81 (6) ◽  
pp. 947-951 ◽  
Author(s):  
W. J. Ethredge ◽  
D. A. Ashley ◽  
J. M. Woodruff

2002 ◽  
Vol 82 (3) ◽  
pp. 521-529 ◽  
Author(s):  
Steven J. Shirtliffe ◽  
Adrian M. Johnston

There is relatively little agronomic information on solid-seeded production of dry bean in western Canada. Recommended seeding density for dry bean can depend on the growth habit of the plant, the yield–density relationship, percent emergence, seed cost and environment. The objective of this study was to determine the yield–density relationships in two determinate bush type cultivars of dry bean and the optimum plant population under solid-seeded production in Saskatchewan. CDC Camino, a late-season pinto bean and CDC Expresso, a medium-season-length black bean were the cultivars evaluated. In most sites, the yield-density relationship of the cultivars was asymptotic and an optimum plant density for maximum yield could not be determined. Camino generally required a lower plant population to reach a given yield than Expresso. Increasing plant population did not affect 1000-seed weight. Higher seeding rate did result in a greater number of seeds produced m-2, with Expresso having a greater increase in seed produced m-2 compared with Camino. Expresso was required to be at higher plant densities than Camino to maximize economic returns. This reflects the differences between cultivars in yield-density relationship and seed cost, as Camino has a heavier 1000-seed weight than Expresso. Saskatchewan bean growers wishing to maximize profit should target plant populations for Expresso and Camino of approximately 50 and 25 plants m-2, respectively. Key words: Saskatchewan, yield components, non-linear regression, seeding rate, narrow rows, solid-seeded


1972 ◽  
Vol 79 (3) ◽  
pp. 517-529 ◽  
Author(s):  
R. W. Willey ◽  
D. S. O. Osiru

SUMMARYTwo experiments are described in which the possible yield benefits of mixing maize and beans were examined under intensive farming conditions. A ‘replacement series’ of pure maize, two-thirds maize/one-third beans, one-third maize/two-thirds beans and pure beans was used at four plant populations. A high level of nitrogen was applied on the maize to eliminate the effects of nitrogen transfer from the beans.Yields of the mixtures were up to 38% higher than could be achieved by growing the crops separately. It is concluded that this occurred because the mixtures achieved a greater utilization of environmental resources; it is suggested that, because of the marked height differences of the two crops, an increased utilization of light was probably a major contributing factor. The need for high populations in mixtures is indicated, partly because the largest yield increases were achieved at high populations and partly because the mixtures required a higher population pressure to produce their maximum yield.The maize was found to have the higher relative competitive ability, and this increased with increase in plant population pressure. It is suggested that this was probably due to the shading effect which the maize had on the beans. The effects of a change in relative competitive abilities, or in relative selling prices, on the optimum proportion of two species in a mixture are also considered.


1987 ◽  
Vol 23 (3) ◽  
pp. 335-347 ◽  
Author(s):  
M. J. Jones

SUMMARYGeneral mathematical relations between yield parameters, plant populations and rainfall were developed for an indigenous sorghum from the results of 28 population/row spacing trials conducted at four sites over five seasons. Populations maximizing yield increased from 25 000 to 69 000 plants ha−1 over the rainfall range 200–700 mm (pre-planting to harvest total). Tillering partly compensated for low populations but yields from 10000 plants ha−1 at 300 and 600 mm rainfall were only 80 and 61% of potential maximum, respectively. Row spacing at constant population affected tiller numbers and eventual panicle weights but not panicle numbers, and any yield differences were unrelated to rainfall.


2021 ◽  
Vol 13 (SI) ◽  
pp. 130-134
Author(s):  
R. Sowmiya ◽  
N. Sakthivel

Plant population is an important attribute in crop management practice. Increasing the plant density by decreasing the crop row spacing was an alternative strategy to optimize crop profit. Hence, the field trial was conducted at Tamil Nadu Agricultural University, Coimbatore, during the winter season of 2017 – 18 to study the effect of row spacing on the growth and yield of cotton genotype TCH 1819. The experimental design was Randomized Block Design (RBD) with seven spacing treatments viz., T1: 60 x 15 cm (1,11,111 plants ha-1), T2: 60 x 20 cm (83,333 plants ha-1), T3: 75 x 15 cm (88,888 plants ha-1), T4: 75 x 20 cm (66,666 plants ha-1), T5: 75 x 30 cm (44,444 plants ha-1), T6: 90 x 15 cm (74074 plants ha-1), T7: 90 x 20cm (55,555 plants ha-1) and was replicated thrice.  Plant densities showed a significant (p=0.05) difference for all the characters studied.  The higher plant density of 1,11,111 plants (60 x 15 cm) observed significantly (p=0.05) maximum plant height (103.14 cm), Leaf Area Index (LAI) (4.35), Dry Matter Production (DMP) (8125 kg/ha), Crop Growth Rate (CGR) (6.58 g/m2/day), root length (41.46 cm), root dry weight (14.94 g/plant), and chlorophyll index (48.24).  The number of sympodial branches per plant (17) and bolls per plant (22 bolls) was found significant in the wider spacing of 75 x 30 cm.  The narrow spacing of 60 x 15 cm noted the highest seed cotton yield (2565 kg/ha), net return (R65706.62), and B: C (2.32) ratio, followed by the spacing of 75 x 15 cm due to more plant density per unit area (m2).  So, maximum yield in cotton can be achieved by decreasing the row spacing and increasing the plant population per unit area.


Sign in / Sign up

Export Citation Format

Share Document