scholarly journals Apple Rootstock Response to Vesicular-arbuscular Mycorrhizal Fungi in a High Phosphorus Soil

1994 ◽  
Vol 119 (3) ◽  
pp. 578-583 ◽  
Author(s):  
F. Morin ◽  
J.A. Fortin ◽  
C. Hamel ◽  
R. L. Granger ◽  
D. L. Smith

A 12-week greenhouse experiment was undertaken to test the efficiency of inoculation of vesicular-arbuscular mycorrhizal fungi on four apple (Malus domestica Borkh) rootstock cultivars: M.26, Ottawa 3 (Ott.3), P.16, and P.22. The plants were grown in soil from an apple rootstock nursery, containing high levels of extractable P (644 kg Bray/1 ha-1). Inoculation treatments were Glomus aggregatum Shenck and Smith emend. Koske, G. intraradix Shenck and Smith, and two isolates of G. versiforme (Karsten) Berch, one originally from California (CAL) and the other one from Oregon (OR). Mycorrhizal plants were taller, produced more biomass, and had a higher leaf P concentration than the uninoculated control plants. Mycorrhizal inoculation also significantly increased the leaf surface area of `M.26' and `Ott.3' compared to the control. Glomus versiforme(CAL)-inoculated plants generally had the best nutrient balance, the greatest final height and shoot biomass, and produced an extensive hyphal network. All the mycorrhizal plants had similar percentages of root colonization, but the size of the external hyphal network varied with fungal species. Glomus versiforme(OR) had a larger extramatrical phase than G. aggregatum and G. intraradix. Mycorrhizal efficiency was associated with a larger external hyphal network, but showed no relation with internal colonization. Despite the high P fertility of the soil used, growth enhancement due to mycorrhizal inoculation was attributed to improved P nutrition.

1985 ◽  
Vol 15 (6) ◽  
pp. 1049-1054 ◽  
Author(s):  
J. L. Kough ◽  
Randy Molina ◽  
R. G. Linderman

Four western conifers inoculated or not inoculated with three species of vesicular–arbuscular mycorrhizal fungi were grown in pasteurized soil and maintained at 11 or 43 ppm phosphorus. Compared with controls, vesicular–arbuscular mycorrhizal colonization increased biomass more of younger than older seedlings. In young seedlings, species with large seeds responded less to phosphate addition or vesicular–arbuscular mycorrhizal colonization than smaller seeded species. Vesicular–arbuscular mycorrhizal seedlings with low phosphorus were always larger than noninoculated low phosphorus controls and comparable in size or larger than nonmycorrhizal controls at moderate phosphorus. Vesicular–arbuscular mycorrhizal plants produced from 100 to 2000% more biomass than noninoculated plants at low phosphorus, and from equality to 500% at moderate phosphorus. Vesicular–arbuscular mycorrhizal fungal species did not differ in plant growth enhancement or root colonization at any seedling age or phosphorus fertility examined. Tree species' responsiveness ranged as follows: Thujaplicata > Sequoiasempervirens > Calocedrusdecurrens > Sequoiadendrongiganteum. Vesicular–arbuscular mycorrhizal fungi enhanced seedling uniformity and size in all the tree species.


Sign in / Sign up

Export Citation Format

Share Document