scholarly journals Expression of a Fungal Glucose Oxidase Gene in Three Potato Cultivars with Different Susceptibility to Late Blight (Phytophthora infestans Mont. deBary)

2003 ◽  
Vol 128 (2) ◽  
pp. 238-245 ◽  
Author(s):  
Kimberly J. Felcher ◽  
D.S. Douches ◽  
W.W. Kirk ◽  
R. Hammerschmidt ◽  
W. Li

Research was done to determine if enhanced resistance to potato (Solanum tuberosum L.) late blight could be obtained by combining host plant resistance and engineered resistance. Late blight susceptible cultivars, Atlantic, and Spunta and the partially resistant cultivar Libertas were transformed with a fungal glucose oxidase gene, resulting in lines which ranged in transgene copy number from 1 to 8. Glucose oxidase enzyme activity ranged from 0.00 to 96.74×10-5 units/mg plant tissue. There was no correlation between copy number and level of transgene mRNA, level of transgene mRNA and enzyme activity, or between level of enzyme activity and disease resistance. Field and growth chamber evaluation of late blight response demonstrated little to no effect of the glucose oxidase transgene in either late blight susceptible or partially late blight resistant cultivars. However, enzyme activity levels were much lower than levels reported in previous research, which may account for the lack of effect of glucose oxidase against Phytophthora infestans. Twenty-one percent of the transgenic lines were phenotypically off-type compared to nontransgenic controls. Most of the off-type transgenic lines (four out of seven) were derived from `Libertas'. Because several off-type lines did not express the glucose oxidase protein, this phenomenon could not be attributed solely to the glucose oxidase transgene. Based on these results, transgenic lines produced for this study do not increase resistance to P. infestans even in combination with moderate host plant resistance. However, production of greater numbers of transgenic lines with the current construct or, production of transgenic lines in which a different constitutive promoter drives the expression of the glucose oxidase gene might result in greater disease resistance. However, the usefulness of any small increase in resistance would need to be evaluated against the time and cost required for development of transgenic potato cultivars and the potential for off-type tubers and plants.

2018 ◽  
Vol 112 (5) ◽  
pp. 669-678 ◽  
Author(s):  
Shou-Feng Zhao ◽  
Hong Jiang ◽  
Zhe Chi ◽  
Guang-Lei Liu ◽  
Zhen-Ming Chi ◽  
...  

1990 ◽  
Vol 18 (6) ◽  
pp. 531-536 ◽  
Author(s):  
H. Whittington ◽  
S. Kerry-Williams ◽  
K. Bidgood ◽  
N. Dodsworth ◽  
J. Peberdy ◽  
...  

2003 ◽  
Vol 128 (2) ◽  
pp. 219-224 ◽  
Author(s):  
Joseph J. Coombs ◽  
David S Douches ◽  
Wenbin Li ◽  
Edward J. Grafius ◽  
Walter L. Pett

The colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), is the leading insect pest of potato (Solanum tuberosum L.) in northern latitudes. Host plant resistance has the potential use in an integrated pest management program for control of colorado potato beetle. During the 1998 and 1999 seasons, field studies were conducted to compare natural (leptine glycoalkaloids and glandular trichomes), engineered (Bt-cry3A and Bt-cry5 transgenic potato lines), and combined (Bt-cry5+glandular trichomes) plant resistance mechanisms of potato for control of colorado potato beetle. Nine different potato clones representing five different host plant resistance mechanisms were evaluated under natural colorado potato beetle infestation at the Montcalm Research Farm in Entrican, Michigan. The Bt-cry3A transgenic lines, the high leptine line (USDA8380-1), and the high foliar glycoalkaloid line (ND5873-15) were most effective for controlling defoliation by colorado potato beetle adults and larvae. The Bt-cry5 line (SPc5-G2) was not as effective as the Bt-cry3A transgenic lines ('Russet Burbank Newleaf,' RBN15, and YGc3.1). The glandular trichome (NYL235-4) and Bt-cry5+glandular trichome lines proved to be ineffective. Significant rank correlations for the potato lines between the two years were observed for egg masses, second and third instar, and fourth instar seasonal cumulative mean number of individuals per plant, and defoliation. Egg mass and first instar seasonal cumulative mean number of individuals per plant were not strong indicators of host plant resistance in contrast to second and third instars or adults. Based on these results, the Bt-cry3A transgenic lines, the high leptine line, and the high total glycoalkaloid line are effective host plant resistance mechanisms for control of colorado potato beetle.


2005 ◽  
Vol 130 (6) ◽  
pp. 857-864 ◽  
Author(s):  
Joseph J. Coombs ◽  
David S. Douches ◽  
Susannah G. Cooper ◽  
Edward J. Grafius ◽  
Walter L. Pett ◽  
...  

Colorado potato beetle (Leptinotarsa decemlineata Say) is the leading insect pest of potato (Solanum tuberosum L.) in northern latitudes. Host plant resistance is an important tool in an integrated pest management program for controlling insect pests. Field studies were conducted to compare natural host plant resistance mechanisms (glandular trichomes and Solanum chacoense Bitter-derived resistance), engineered [Bacillus thuringiensis (Bt) Berliner Bt-cry3A], and combined (glandular trichomes + Bt-cry3A and S. chacoense-derived resistance + Bt-cry3A transgenic potato lines) sources of resistance for control of colorado potato beetle. Six different potato clones representing five different host plant resistance mechanisms were evaluated for 2 years in a field situation under natural colorado potato beetle pressure in Michigan and New York, and in a no-choice field cage study in Michigan. In the field studies, the S. chacoense-derived resistance line, Bt-cry3A transgenic, and combined resistance lines were effective in controlling defoliation by colorado potato beetle adults and larvae. Effectively no feeding was observed in the Bt-cry3A transgenic lines. The glandular trichome line suffered less defoliation than the susceptible control, but had greater defoliation than the Bt-cry3A transgenic lines and the S. chacoense-derived resistance line. In the no-choice cage study, the Bt-cry3A transgenic lines and the combined resistance lines were effective in controlling feeding by colorado potato beetle adults and larvae with no defoliation observed. The S. chacoense-derived resistance line and the glandular trichome line suffered less defoliation than the susceptible control. Based on the results of the field trials and no-choice field cage studies, these host plant resistance mechanisms could be used to develop potato varieties for use in a resistance management program for control of colorado potato beetle.


2005 ◽  
Vol 24 (11) ◽  
pp. 961-970 ◽  
Author(s):  
W.W. Kirk ◽  
F.M. Abu-El Samen ◽  
J.B. Muhinyuza ◽  
R. Hammerschmidt ◽  
D.S. Douches ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document