scholarly journals Combined Analysis of S-Alleles in European Pear by Pollinations and PCR-based S-Genotyping; Correlation between S-Phenotypes and S-RNase Genotypes

2008 ◽  
Vol 133 (2) ◽  
pp. 213-224 ◽  
Author(s):  
Javier Sanzol ◽  
Timothy P. Robbins

Pollen–pistil incompatibility in european pear (Pyrus communis L.) compromises adequate orchard pollination and fruit set and restricts cross-fertility between cultivars suitable as parents in breeding programs. Genetic control is simple, with a single locus expressed gametophytically in pollen controlling the rejection of the pollen tube in the style. Semicompatible pollination arises when only one allele of a pollen parent matches the pistil. Semicompatible test-crosses using partially S-genotyped european pear cultivars allowed the discrimination of 14 S-alleles (S1 to S14) at the phenotypic level and the assignment of 33 cultivars to 13 incompatibility groups. Partial genomic sequences of the S-RNase gene, spanning between the C1 and C5 conserved regions, were obtained for each new S-allele identified (S6 to S14). These sequences and those reported previously for the S1 to S5 RNases allowed a set of consensus primers amplifying all 14 S-RNase alleles to be designed. Allele-specific PCR allowed discrimination between those S-RNases giving amplification products of similar size with consensus primers. These two approaches provided a method for the molecular identification of all 14 S-alleles in european pear. With this methodology, we demonstrate that the S-RNase genotypes inferred from PCR exactly matches the S-phenotypes deduced from test-crosses. Comparison of the sequences obtained with those of S-RNases already published allowed us to relate S-alleles between studies. This will allow the prediction of cross-incompatibility among an even larger number of european pear cultivars.

HortScience ◽  
2004 ◽  
Vol 39 (5) ◽  
pp. 943-947 ◽  
Author(s):  
Wim Broothaerts ◽  
Ilse Van Nerum ◽  
Johan Keulemans

Apple cultivars display a self-incompatibility system that restricts self-fertilization and fertilization between cultivars bearing identical S-alleles. There has been considerable progress in identification of S-alleles in apple in recent years and methods are now available for the accurate S-genotyping of cultivars. Following a recently revised numerical identification system for apple S-alleles, we present the first extensive compilation of apple cultivars with their S-genotypes. This list contains data from our own investigations using S-allele-specific PCR methodology, including a number of new data, as well as published data from various other sources. Eighteen different S-alleles are discriminated, which allowed the determination of the S-genotypes for 150 diploid or triploid European, American, and Japanese cultivars. Many of these cultivars are cultivated worldwide for their fruit. Also included are a number of old, obsolete cultivars and a few nondomestic genotypes. We observed a wide variation in the frequency of S-alleles in the apple germplasm. Three S-alleles (S2, S3, and S9) are very common in the cultivars evaluated, presumably as a result of the widespread use of the same breeding parents, and seven alleles are very rare (S4, S6, S8, S16, S22, S23, S26).


2019 ◽  
Author(s):  
Maryam Bagheri ◽  
Ahmad Ershadi

AbstractIn the present study, the S-alleles of eighteen pear cultivars, (including fourteen cultivars planted commercially in Iran and four controls) are determined. 34 out of 36 S-alleles are detected using nine allele-specific primers, which are designed for amplification of S101/S102, S105, S106, S107, S108, S109, S111, S112 and S114, as well as consensus primers, PycomC1F and PycomC5R. S104, S101 and S105 were the most common S-alleles observed, respectively, in eight, seven and six cultivars. In 16 cultivars, (‘Bartlett’ (S101S102), ‘Beurre Giffard’ (S101S106), ‘Comice’ (S104S105), ‘Doshes’ (S104S107), ‘Koshia’ (S104S108), ‘Paskolmar’ (S101S105), ‘Felestini’ (S101S107), ‘Domkaj’ (S104S120), ‘Ghousi’ (S104S107), ‘Kaftar Bache’ (S104S120), ‘Konjoni’ (S104S108), ‘Laleh’ (S105S108), ‘Natanzi’ (S104S105), ‘Sebri’ (S101S104), ‘Se Fasleh’ (S101S105) and ‘Louise Bonne’ (S101S108)) both alleles are identified but in two cultivars, (‘Pighambari’ (S105) and ‘Shah Miveh Esfahan’ (S107)) only one allele is recognized. It is concluded that allele-specific PCR amplification can be considered as an efficient and rapid method to identify S-genotype of Iranian pear cultivars.


Author(s):  
Agnes Kivistik ◽  
Liina Jakobson ◽  
Kersti Kahu ◽  
Kristiina Laanemets

AbstractThe pollination of self-incompatible diploid sweet cherry is determined by the S-locus alleles. We resolved the S-alleles of 50 sweet cherry cultivars grown in Estonia and determined their incompatibility groups, which were previously unknown for most of the tested cultivars. We used consensus primers SI-19/20, SI-31/32, PaConsI, and PaConsII followed by allele-specific primers and sequencing to identify sweet cherry S-genotypes. Surprisingly, 48% (24/50) of the tested cultivars, including 17 Estonian cultivars, carry the rare S-allele S17, which had initially been described in wild sweet cherries in Belgium and Germany. The S17-allele in Estonian cultivars could originate from ‘Leningradskaya tchernaya’ (S6|S17), which has been extensively used in Estonian sweet cherry breeding. Four studied cultivars carrying S17 are partly self-compatible, whereas the other 20 cultivars with S17 have not been reported to be self-compatible. The recommended pollinator of seven self-incompatible sweet cherries is of the same S-genotype, including four with S17-allele, suggesting heritable reduced effectiveness of self-infertility. We classified the newly genotyped sweet cherry cultivars into 15 known incompatibility groups, and we proposed four new incompatibility groups, 64–67, for S-locus genotypes S3|S17, S4|S17, S5|S17, and S6|S17, respectively, which makes them excellent pollinators all across Europe. Alternatively, the frequency of S17 might be underestimated in Eastern European populations and some currently unidentified sweet cherry S-alleles might potentially be S17.


2014 ◽  
Vol 46 (4) ◽  
pp. 364-371
Author(s):  
Kang Hee Cho ◽  
Jeong-Hee Kim2 ◽  
Jung Woo Lee ◽  
Soon-Il Kwon ◽  
Jong Taek Park ◽  
...  

1995 ◽  
Vol 91 (4) ◽  
pp. 691-698 ◽  
Author(s):  
G. A. Janssens ◽  
I. J. Goderis ◽  
W. F. Broekaert ◽  
W. Broothaerts

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1531
Author(s):  
Kyeong-Seong Cheon ◽  
Young-Min Jeong ◽  
Hyoja Oh ◽  
Jun Oh ◽  
Do-Yu Kang ◽  
...  

Temperate japonica rice varieties exhibit wide variation in the phenotypes of several important agronomic traits, including disease resistance, pre-harvest sprouting resistance, plant architecture, and grain quality, indicating the presence of genes contributing to favorable agronomic traits. However, gene mapping and molecular breeding has been hampered as a result of the low genetic diversity among cultivars and scarcity of polymorphic DNA markers. Single nucleotide polymorphism (SNP)-based kompetitive allele-specific PCR (KASP) markers allow high-throughput genotyping for marker-assisted selection and quantitative trait loci (QTL) mapping within closely related populations. Previously, we identified 740,566 SNPs and developed 771 KASP markers for Korean temperate japonica rice varieties. However, additional markers were needed to provide sufficient genome coverage to support breeding programs. In this study, the 740,566 SNPs were categorized according to their predicted impacts on gene function. The high-impact, moderate-impact, modifier, and low-impact groups contained 703 (0.1%), 20,179 (2.7%), 699,866 (94.5%), and 19,818 (2.7%) SNPs, respectively. A subset of 357 SNPs from the high-impact group was selected for initial KASP marker development, resulting in 283 polymorphic KASP markers. After incorporation of the 283 markers with the 771 existing markers in a physical map, additional markers were developed to fill genomic regions with large gaps between markers, and 171 polymorphic KASP markers were successfully developed from 284 SNPs. Overall, a set of 1225 KASP markers was produced. The markers were evenly distributed across the rice genome, with average marker density of 3.3 KASP markers per Mbp. The 1225 KASP markers will facilitate QTL/gene mapping and marker-assisted selection in temperate japonica rice breeding programs.


Sign in / Sign up

Export Citation Format

Share Document