scholarly journals Power quality in power supply systems of mining and processing enterprises in Russia

2021 ◽  
Vol 25 (3) ◽  
pp. 356-368
Author(s):  
V. I. Panteleev ◽  
I. S. Kuzmin ◽  
A. A. Zavalov ◽  
A. V. Tikhonov ◽  
E. V. Umetskaia

This paper investigates the effect of the load factor of frequency converters and thyristor converters on electrical power quality. Recommendations for reducing the influence of higher harmonics and switching overvoltages on the characteristics of electrical power are provided. Higher harmonics were measured by a PKK57 complex device for controlling electrical parameters and a digital oscilloscope of the Tektronix TDS 2024V type. Impulse switching overvoltages were recorded by an active resistance divider of the DNEK-10 type and the above-mentioned oscilloscope. The obtained data were processed by the Loginom 6.4 software and the methods of mathematical statistics. The lower threshold level of the load factor of frequency converters and thyristor converters was set equal to 0.8, at which the sinusoidal distortion of voltage curves correspond to the RF standard of electrical power quality. The suppression degree of higher harmonics from the 5th to 17th frequency by power transformers with a capacity of 250–6,300 kV. A ranged from 95 to 45%. The use of the ‘transformer–converter–electric receiver’ system as applied to the power supply systems of mining and processing enterprises was substantiated. It was shown that electric motors with a capacity of up to 2,500 kW inclusively require protection against switching overvoltages. Conventional RC-absorbers based on RC-circuits connected to the terminals of electric motors are shown to be highly efficient for protecting electric motors against switching overvoltages. Thus, the quality of electrical power in power supply systems of mining and processing enterprises in Russia can be ensured by frequency converters and thyristor converters with a load factor of 0.8 or greater. Provided that the transformer capacity does not exceed 1,000 kV. A, a more efficient and less expensive ‘transformer–converter–electrical receiver’ system is recommended. Effective protection of electric motors of up to 2,500 kW inclusive can be provided using the proposed conventional RC absorber, which maintains the overvoltage rate at a level not exceeding 1.7.

2021 ◽  
Vol 247 ◽  
pp. 132-140
Author(s):  
Yurii Sychev ◽  
Roman Zimin

The urgency and necessity of choosing and justifying the structures of hybrid filter-compensating devices based on series and parallel active filters to improve the quality of electricity in the power supply systems of enterprises of the mineral resource complex is shown. Mathematical models of hybrid filter compensating devices based on parallel and series active filters have been developed. Based on these mathematical models, computer simulation models of the indicated hybrid structures have been developed. The results of simulation showed the effectiveness of the correction of power quality indicators in terms of reducing the level of higher harmonics of current and voltage, as well as voltage deviations. The degree of influence of filter-compensating devices on the power quality indicators, which determine the continuity and stability of the technological process at the enterprises of the mineral resource complex, have been revealed. It has been established that a hybrid filter-compensating device based on a parallel active filter can reduce the level of higher harmonics of current and voltage by more than 90 and 70 %, respectively, and based on a series active filter, it can reduce the level of higher harmonics of voltage by more than 80 %. Based on the simulation results, the possibility of compensating for the reactive power of a hybrid structure based on parallel active and passive filters has been revealed. The possibility of integrating hybrid filter-compensating devices into more complex multifunctional electrical systems for the automated improvement of the quality of electricity is substantiated, as well as the expediency and prospects of their use in combined power supply systems based on the parallel operation of centralized and autonomous sources of distributed generation.


Sign in / Sign up

Export Citation Format

Share Document