Transferring Soil Conservation Technology to Farmers

Author(s):  
R. W. Jolly ◽  
B. Eleveld ◽  
J. M. McGrann ◽  
D. D. Raitt
2021 ◽  
pp. 72-75
Author(s):  
Sh. Sh. OMARIEV ◽  
L.Y. KARAEVA ◽  
T.V. RAMAZANOVA ◽  
N.M. MANSUROV ◽  
R.M. PAIZULAEVA ◽  
...  

2020 ◽  
Vol 15 (No. 3) ◽  
pp. 158-165 ◽  
Author(s):  
Eva Procházková ◽  
David Kincl ◽  
David Kabelka ◽  
Jan Vopravil ◽  
Pavel Nerušil ◽  
...  

Maize (Zea mays L.) belongs among the most important agriculture crops all over the world. The conventional way of cultivating maize with wide row spacing does not have a soil conservation effect and significantly contributes to water erosion and surface run-off. In our research, we tested the soil conservation technology (strip-till into grass cover) which took place in 2016 and 2017 in the location of Central Bohemia. The impact of a strip-till system of maize into grass cover on reducing the soil loss due to erosion was verified on the area of 21 m<sup>2</sup> using a rainfall simulator. During the research, 70 measurements were realised. The strip-till was compared to fallow land, conventional cultivation and no-till methods. Profound differences were found in the soil loss between the treatments. There was a decrease in the soil loss of about 98% in the strip-till compared to the conventional cultivation. Moreover, the surface run-off was reduced by 79%. The ANCOVA (analysis of covariance) models of the log-transformed soil loss on the surface run-off and treatment were highly significant (P &lt; 10<sup>–15</sup>). The measurement results clearly demonstrate the positive effect of the strip-till into the grass on the surface run-off and soil loss. This positive soil conservation effect was observed even in springtime, as well as the rest of the season. Using a grass cover for establishing the maize significantly contributes to the soil conservation on the land threatened by erosion and offers farmers a suitable way of farming when growing maize. Strip-tilling is a technology that has great potential in sustainable farming.


2008 ◽  
Vol 42 (2) ◽  
pp. 210-222 ◽  
Author(s):  
Krishna R. Tiwari ◽  
Bishal K. Sitaula ◽  
Ingrid L. P. Nyborg ◽  
Giridhari S. Paudel

2020 ◽  
pp. 67-79
Author(s):  
Yu. Kravchenko

In Ukraine 57.5 % of agricultural land is subjected to erosion with 10–24 million tons of humus, 0.3–0.96 million tons of nitrogen, 0.7–0.9 million tons of phosphorus and 6–12 million tons of potassium lost annually. Degradation processes are also common on chernozems, which cover about 60 % of the Ukrainian territory. The aim of the research is to defi ne the most eff ective soil conservation practices and legislative decisions aimed to conservation/recovering the Ukrainian chernozem fertility. The experimental data of the agrochemical certifi cation of Ukrainian lands, data from scientifi c papers, stock and instructional materials as well as our own fi eld and laboratory studies were used. It has been established that the long-term use of deep subsurface tillage on typical chernozem increases, compared with plowing, the content of 10–0.25 mm of air-dry and water-resistant aggregates, the bulk density, soil water storages, water infi ltration rates, the content of mobile phosphorus and exchangeable potassium, pHH2O, CaCO3 stocks, the contents of humic and fulvic acids, molecular weights of humic acids – by 5.5 and 3.06 %; 0.05 g/cm3; 25.5 mm; 22.6 mm/h; 0.1 and 3 mg/100 g of soil; 0.03 pHH2O; 18 t/ha, 0.02 and 0.04 %, 91195 kDa, respectively. Fertilizers may contribute to the crop yields increase from by 60% in the Polissya, by 40 % – in the Forest Steppe, by 15 % – in the Wet Steppe, by 10 % – in the Dry Steppe and by 40 % – in the Irrigated Steppe areas. In soil-conservation rotations, the crop placement and alternation are advisable to combine with strips or hills sowing, taking into account the local relief features; soil alkalinization, applying anti-erosion structures. Ukrainian agriculture will receive additional 10–12 million tons of forage units or 20–22 % from all fodder in a fi eld agriculture under increasing 8–10 % of arable lands for intercrops. It is advisable to mulch the eroded chernozems of Ukraine depending on their texture composition: 1.3 t/ha of mulch for sandy and loamy soils, 1.9 t/ha – for sandy and 1.1 t/ha – for loamy soils. The implementation of soil conservation agriculture can minimize some soil degradation processes and improve eff ective soil properties required to realize the biological potential of cultivated plants. Key words: chernozem, degradation, fertility, soil conservation technologies, agriculture policy.


2019 ◽  
Vol 10 ◽  
pp. 1853-1863
Author(s):  
Kassaye Gurebiyaw Legese ◽  
Taye Melese ◽  
Tadie Mire ◽  
Abebe Birara ◽  
Kefale Eniyew

Soil is a crucial and precious natural resource that govern numerous ecological processes. However, in Ethiopia particularly in north Gondar zone, soil erosion is a severe problem and a major cause of the decline of agricultural productivity. The adoption and diffusion of soil and water conservation practices (SWC), as a way to tackle this challenge, has become an important issue in the development policy agenda in the zone. Therefore, this study was to identify factors affecting Soil conservation investments in the North Gondar zone. Data was collected through interviewed schedule, filed observation and focus group discussion. The multistage sampling technique was employed to select 206 sample households.  Both descriptive and econometrics model was used to analyze the collected data. A multivariate profit (MPV) model was used to analyze the effect of demographic, socioeconomic, market, institutional and biophysical related factors on the interdependent investment decisions of SWC practices using household survey. The MPV model analysis indicates that farmers invest a combination of practices at parcel level by considering substitution and complementarity effects of the practices. The results also revealed that age of household heads, literacy status of household heads, off-farm activity, distance of farmlands from homesteads, tropical livestock unit, and access to training were influence farmers’ investments in SWC practices. The overall results indicate that the identified physical, socioeconomic, and institutional factors influence promote or hinder investments in SWC practice so, policymakers should take into consideration these various factors in designing and implementing SWC policies and Programmers.


1940 ◽  
Vol 32 (1) ◽  
pp. 86-86
Author(s):  
C. S. S.
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document