Introducing winter canola to the winter wheat-fallow region of the Pacific Northwest

Crops & Soils ◽  
2014 ◽  
Vol 47 (5) ◽  
pp. 22-27 ◽  
Author(s):  
Frank L. Young ◽  
Dale K. Whaley ◽  
William L. Pan ◽  
R. Dennis Roe ◽  
J.R. Alldredge
2014 ◽  
Vol 13 (1) ◽  
pp. CM-2013-0023-RS ◽  
Author(s):  
Frank L. Young ◽  
Dale K. Whaley ◽  
William L. Pan ◽  
R. Dennis Roe ◽  
J. R. Alldredge

2003 ◽  
Vol 95 (4) ◽  
pp. 828-835 ◽  
Author(s):  
K. M. Camara ◽  
W. A. Payne ◽  
P. E. Rasmussen

1985 ◽  
Vol 22 (3) ◽  
pp. 179
Author(s):  
D.E. Wilkins ◽  
R.R. Allmaras ◽  
J.M. Kraft ◽  
R.E. Ramig

Plant Disease ◽  
2016 ◽  
Vol 100 (5) ◽  
pp. 991-995 ◽  
Author(s):  
D. I. Vera ◽  
T. D. Murray

Eyespot is a chronic disease of wheat caused by Oculimacula yallundae and O. acuformis that results in premature ripening of grain, lodging, and reduced grain yield. Discovery of the sexual stage of these Oculimacula spp. in the Pacific Northwest (PNW) of the United States is relatively recent and the role of apothecia in the epidemiology of eyespot is unclear. Our goals were to determine whether and when apothecia of these Oculimacula spp. are found in the PNW, and monitor their ability to survive over summer and over winter. Seventy-three harvested commercial wheat fields in Idaho, Oregon, and Washington were surveyed for apothecia during spring and fall 2012 and spring 2013. Apothecia of both species were found in both spring and fall in 19% of fields. Apothecia survived on straw placed on the soil surface over the summer but not the winter. This is the first report of O. yallundae apothecia in commercial wheat fields in the PNW. Occurrence of apothecia in spring and fall demonstrates that sexual reproduction of both species occurs regularly in the PNW and at a time when ascospores could serve as primary inoculum for infection of winter wheat. Results of this study are consistent with previous population genetic studies that found high genotypic diversity of both eyespot pathogens in winter wheat fields and provides a baseline for understanding the influence of sexual reproduction on population dynamics and genetics of both pathogens.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
M. C. Quincke ◽  
C. J. Peterson ◽  
C. C. Mundt

Cephalosporium stripe (caused byCephalosporium gramineum) can be a serious disease of winter wheat (Triticum aestivumL.) in the Pacific Northwest of the USA. Effects of Cephalosporium stripe on yield, test weight, protein, and kernel characteristics were examined using 12 winter wheat varieties in field plots inoculated and not inoculated with the pathogen. Averaged over varieties, inoculation decreased yield, test weight, kernel weight, and kernel diameter; grain protein and the standard deviations of kernel weight and kernel diameter were increased by inoculation. Grain yield of the susceptible check was reduced by as much as 41% with addition of inoculum. The most resistant and the most susceptible varieties performed similarly for yield in the two environments, while varieties with intermediate levels of resistance were sometimes inconsistent. There was a linear relationship between yield and % whiteheads (sterile heads caused by disease) in one environment and a curvilinear relation in the other.


1996 ◽  
Vol 11 (2-3) ◽  
pp. 58-63 ◽  
Author(s):  
John E. Hammel

Sustainable crop production in the Pacific Northwest dry-farmed areas relies heavily on tillage and residue management systems to conserve water. Stable, sustainable yields cannot be achieved without adequate water conservation techniques. Frozen soil can reduce infiltration markedly, which decreases overwinter profile water storage and can cause severe soil erosion. Uncurbed evaporation losses throughout the year can greatly limit yields, particularly with summer fallow.In both summer-fallowed and annually cropped regions where soil freezes frequently, fall tillage is used to increase surface macroporosity and to provide open channels to below the frost depth. This enhances infiltration throughout the winter and insures better water intake during rapid snowmelt and rainfall when the soil is frozen. Fall tillage enhances overwinter water recharge under these conditions, whereas in areas where soil freezes infrequently, it does not improve water storage efficiency.In the dry-farmed regions receiving less than 330 mm annual precipitation, a winter wheat-fallow system is used to reduce the risk of uneconomical yields. Successful establishment of winter wheat following summer fallow is feasible only when proper management has suppressed evaporative loss. During the dry summer fallow, tillage is used to develop and maintain a soil mulch that restricts the flow of water, as both liquid and vapor. The tillage mulch effectively conserves stored soil water and maintains adequate seedzone moisture for fall establishment of winter wheat. However, the soil mulch can lead to high wind and water erosion.In the Pacific Northwest dry-farmed region, tillage by itself is not considered a substitute for proper residue management. Crop residues following harvest are important for conserving water and controlling erosion. Under conservation programs implemented since 1985, shallow subsurface tillage systems that maintain residues on the surface have substantially reduced wind and water erosion in the region. Surface residues are effective in decreasing evaporative water loss and trapping snow during the winter, and therefore increase overwinter recharge. While surface residues are much less effective in suppressing evaporative losses in dry-farmed areas during extended dry periods, residues provide substantial control of wind and water erosion during the fallow.Before conservation tillage systems came into use in the Pacific Northwest, water conservation frequently was achieved only through tillage. This helped to stabilize yields, but at a high cost to the soil resource. Poor use of surface residues and intensive tillage contributed to extensive wind and water erosion. Continued use of these practices would have caused yields to decline over time and required greater agrichemical inputs. To meet soil and water conservation needs, site-specific tillage and residue management systems were developed to account for the diversity and variability of soils and climate across the Pacific Northwest. Common to all these production systems is that both water conservation and effective residue management to protect the soil are required for long-term sustainable production.


Sign in / Sign up

Export Citation Format

Share Document