Water conservation practices for sustainable dryland farming systems in the Pacific Northwest

1996 ◽  
Vol 11 (2-3) ◽  
pp. 58-63 ◽  
Author(s):  
John E. Hammel

Sustainable crop production in the Pacific Northwest dry-farmed areas relies heavily on tillage and residue management systems to conserve water. Stable, sustainable yields cannot be achieved without adequate water conservation techniques. Frozen soil can reduce infiltration markedly, which decreases overwinter profile water storage and can cause severe soil erosion. Uncurbed evaporation losses throughout the year can greatly limit yields, particularly with summer fallow.In both summer-fallowed and annually cropped regions where soil freezes frequently, fall tillage is used to increase surface macroporosity and to provide open channels to below the frost depth. This enhances infiltration throughout the winter and insures better water intake during rapid snowmelt and rainfall when the soil is frozen. Fall tillage enhances overwinter water recharge under these conditions, whereas in areas where soil freezes infrequently, it does not improve water storage efficiency.In the dry-farmed regions receiving less than 330 mm annual precipitation, a winter wheat-fallow system is used to reduce the risk of uneconomical yields. Successful establishment of winter wheat following summer fallow is feasible only when proper management has suppressed evaporative loss. During the dry summer fallow, tillage is used to develop and maintain a soil mulch that restricts the flow of water, as both liquid and vapor. The tillage mulch effectively conserves stored soil water and maintains adequate seedzone moisture for fall establishment of winter wheat. However, the soil mulch can lead to high wind and water erosion.In the Pacific Northwest dry-farmed region, tillage by itself is not considered a substitute for proper residue management. Crop residues following harvest are important for conserving water and controlling erosion. Under conservation programs implemented since 1985, shallow subsurface tillage systems that maintain residues on the surface have substantially reduced wind and water erosion in the region. Surface residues are effective in decreasing evaporative water loss and trapping snow during the winter, and therefore increase overwinter recharge. While surface residues are much less effective in suppressing evaporative losses in dry-farmed areas during extended dry periods, residues provide substantial control of wind and water erosion during the fallow.Before conservation tillage systems came into use in the Pacific Northwest, water conservation frequently was achieved only through tillage. This helped to stabilize yields, but at a high cost to the soil resource. Poor use of surface residues and intensive tillage contributed to extensive wind and water erosion. Continued use of these practices would have caused yields to decline over time and required greater agrichemical inputs. To meet soil and water conservation needs, site-specific tillage and residue management systems were developed to account for the diversity and variability of soils and climate across the Pacific Northwest. Common to all these production systems is that both water conservation and effective residue management to protect the soil are required for long-term sustainable production.

1996 ◽  
Vol 11 (2-3) ◽  
pp. 77-82 ◽  
Author(s):  
L.F. Elliott ◽  
P. Chevalier

Sustainable rainfed cropping systems are needed in the Pacific Northwest of the United States to reduce or eliminate wind and water erosion, improve soil quality, and control weeds with reduced chemical inputs. A grass seed cropping system is excellent for improving soil quality and for controlling erosion, and can be grazed by sheep to produce meat and wool Tilla ge and residue management methods that create a rough surface to reduce wind and water erosion and increase water infiltration include: use of a chisel to create large clods; leaving residue on the surface; and use of the Paratill to shatter the soil to increase water infiltration with little disturbance of the soil surface. Including a legume in the rotation may help to break disease cycles, add N and C to the soil, and improve soil biological properties. The use of surface residues and tillage to control erosion and increase water infiltration may demand new approaches to weed contro I Rhizobacteria that attack the roots of weeds but not of wheat may reduce the need for chemica I herbicides. Research being conducted on these techniques in the Pacific Northwest of the United States and in other countries should soon result in guidelines for sustainable agricultural systems for the dryland, rainfed areas of the world.


1996 ◽  
Vol 11 (2-3) ◽  
pp. 52-57 ◽  
Author(s):  
R.I. Papendick

AbstractThe Northwest Wheat Region is a contiguous belt of 3.3 million ha in Idaho, Oregon and Washington. Its climate varies from subhumid (<650 mm annual precipitation) to semiarid (<350 mm), with more than 60% of the annual precipitation occurring during the winter. Winter wheat yields range from a high of 8 t/ha in the wetter zones to a low of 1.5 t/ha in the drier zones. Winter wheat is grown in rotation with spring cereals and pulses where annual precipitation exceeds 450 mm; winter wheat-fallow prevails where annual precipitation is less than 330 mm. Tillage practices are designed to maximize infiltration and retention of water through soil surface and crop residue management. Because of the combination of winter precipitation, steep topography, and winter wheat cropping, much of the region is subject to a severe water erosion hazard, accentuated by freeze-thaw cycles that increase surface runoff and weaken the soil structure. Wind erosion is a major problem in the drier zones, where cover is less and soils are higher in sand. Residue management, primarily through reduced tillage and no-till systems, is the first defense against both wind and water erosion, but yields often are higher with conventional intensive ti llage. Factors that limit yields with conservation farming include weed and disease problems and th e lack of suitable tillage and seeding equipment. Conservation strategies must shift from relying on traditional tillage methods to development of complete no-till systems. Spring cropping as a replacement for winter wheat also needs to be investigated. In some cases, tillage for water conservation must be made compatible with tillage for erosion control.


2014 ◽  
Vol 28 (2) ◽  
pp. 418-425 ◽  
Author(s):  
Frank L. Young ◽  
Alex G. Ogg ◽  
J. Richard Alldredge

In the Pacific Northwest, downy brome continues to infest winter wheat, especially in low-rainfall areas where the winter wheat–summer fallow rotation is the dominant production system. In Washington, a study was conducted for 2 yr at two locations in the winter wheat–summer fallow region to determine the influence of four postharvest tillage treatments on vertical seed movement, seedbank depletion, and plant densities of downy brome. The four tillage implements included a disk, sweep plow, harrow, and skew treader. The study also included a no-till treatment for comparison. The sweep plow and disk led to the most vertical movement of downy brome seed compared with the no-till treatment. Approximately 75% of the fall postharvest seed in the no-till treatment was located either on the soil surface or in the 0- to 3-cm depth at both locations. In contrast, 75% of the seed in the disked treatment was located from 0 to 6 cm deep at both locations. The disk and sweep plow both decreased downy brome seed in the soil at the 0- to 3-cm depth compared with the harrow and no-till treatments. There was no difference in downy brome plant densities following postharvest tillage in the summer fallow due to any of the treatments. However, plant densities in the subsequent winter wheat crop were reduced by the disk and sweep plow compared with the no-till and skew-treader treatments. In general, seed densities as affected by the skew treader fell between the disk and the no-till treatments. The use of the sweep plow and the disk should be integrated into a weed management strategy for downy brome in the wheat–fallow region of the Pacific Northwest.


2003 ◽  
Vol 95 (4) ◽  
pp. 828-835 ◽  
Author(s):  
K. M. Camara ◽  
W. A. Payne ◽  
P. E. Rasmussen

2014 ◽  
Vol 13 (1) ◽  
pp. CM-2013-0023-RS ◽  
Author(s):  
Frank L. Young ◽  
Dale K. Whaley ◽  
William L. Pan ◽  
R. Dennis Roe ◽  
J. R. Alldredge

Plant Disease ◽  
1986 ◽  
Vol 70 (9) ◽  
pp. 894 ◽  
Author(s):  
R. James Cook

Sign in / Sign up

Export Citation Format

Share Document