Identification of Molecular Markers Associated with Adult Plant Resistance to Powdery Mildew in Common Wheat Cultivar Massey

Crop Science ◽  
2001 ◽  
Vol 41 (4) ◽  
pp. 1268-1275 ◽  
Author(s):  
Sixin Liu ◽  
C. A. Griffey ◽  
M. A. Saghai Maroof
PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0155358 ◽  
Author(s):  
Fang Wang ◽  
Wenying Wu ◽  
Dongzhi Wang ◽  
Wenlong Yang ◽  
Jiazhu Sun ◽  
...  

2012 ◽  
Vol 63 (6) ◽  
pp. 539 ◽  
Author(s):  
M. A. Asad ◽  
B. Bai ◽  
C. X. Lan ◽  
J. Yan ◽  
X. C. Xia ◽  
...  

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a fungal disease that causes significant yield losses in many wheat-growing regions of the world. Previously, five quantitative trait loci (QTLs) for adult-plant resistance (APR) to stripe rust resistance were identified in Italian wheat cultivar Libellula. The objectives of this study were to map QTLs for APR to powdery mildew in 244 F2 : 3 lines of Libellula/Huixianhong, to analyse the stability of detected QTLs across environments, and to assess the association of these QTLs with stripe rust resistance. Powdery mildew response was evaluated for 2 years in Beijing and for 1 year in Anyang. The correlation between averaged maximum disease severity (MDS) and averaged area under disease progress curve (AUDPC) over 2 years in Beijing was 0.98, and heritabilities of MDS and AUDPC were 0.65 and 0.81, respectively, based on the mean values averaged across environments. SSR markers were used to screen the parents and mapping population. Five QTLs were identified by inclusive composite interval mapping, designated as QPm.caas-2DS, QPm.caas-4BL.1, QPm.caas-6BL.1, QPm.caas-6BL.2, and QPm.caas-7DS. Three QTLs (QPm.caas-2DS and QPm.caas-6BL.1, and QPm.caas-6BL.2) seem to be new resistance loci for powdery mildew. QTLs QPm.caas-2DS and QPm.caas-4BL.1 were identified at the same position as previously mapped QTLs for stripe rust resistance in Libellula. The QTL QPm.caas-7DS, derived from Libellula, coincided with the slow rusting and slow mildewing locus Lr34/Yr18/Pm38. These results and the identified markers could be useful for wheat breeders aiming for durable resistance to both powdery mildew and stripe rust.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiaohan Shi ◽  
Peipei Wu ◽  
Jinghuang Hu ◽  
Dan Qiu ◽  
Yunfeng Qu ◽  
...  

Winter wheat cultivar Liangxing 99, which carries gene Pm52, is resistant to powdery mildew at both seedling and adult plant stages. An F2:6 recombinant inbred line (RIL) population from cross Liangxing 99 × Zhongzuo 9504 was phenotyped with Blumeria graminis f. sp. tritici isolate Bgt27 at the adult plant stage in four field tests and the seedling stage in a greenhouse test. The analysis of bulk segregant RNA sequences identified an SNP-enriched locus, Qaprpm.caas.2B, on chromosome 2BL in the same genomic interval of Pm52 associated with the all-stage resistance (ASR) and Qaprpm.caas.7A on chromosome 7AL associated with the adult-plant resistance (APR) against the disease. Qaprpm.caas.2B was detected in a 1.3 cM genetic interval between markers Xicscl726 and XicsK128 in which Pm52 was placed with a range of LOD values from 28.1 to 34.6, and the phenotype variations explained in terms of maximum disease severity (MDS) ranged from 45% to 52%. The LOD peak of Qaprpm.caas.7A was localized in a 4.6 cM interval between markers XicsK7A8 and XicsK7A26 and explained the phenotypic variation of MDS ranging from 13% to 16%. The results of this study confirmed Pm52 for ASR and identified Qaprpm.caas.7A for APR to powdery mildew in Liangxing 99. Keywords: Triticum aestivum; Blumeria graminis f. sp. tritici; Pm52; QTL; BSR-Seq


Sign in / Sign up

Export Citation Format

Share Document