Estimation of Components of Soil Cation Exchange Capacity from Measurements of Specific Surface and Organic Matter

1976 ◽  
Vol 40 (3) ◽  
pp. 461-462 ◽  
Author(s):  
D. Curtin ◽  
G. W. Smillie
1970 ◽  
Vol 75 (2) ◽  
pp. 365-367 ◽  
Author(s):  
T. M. Addiscott

Two methods have been used previously to resolve the ‘mineral’ and ‘organic’ fractions of the cation exchange capacities of soils. Williams (1932) and Hallsworth & Wilkinson (1958) used multiple regression analysis to relate cation exchange capacity (CEC) in several soils to percentage organic matter (OM) and percentage clay, and thence to calculate the average values of the CECs of OM and clay. For individual soils, Davies & Davies (1965) and Clark & Nichol (1968) measured the CEC before and after oxidizing the OM with hydrogen peroxide.


2017 ◽  
Vol 135 ◽  
pp. 242-251 ◽  
Author(s):  
Jalal Shiri ◽  
Ali Keshavarzi ◽  
Ozgur Kisi ◽  
Ursula Iturraran-Viveros ◽  
Ali Bagherzadeh ◽  
...  

2013 ◽  
Vol 5 (4) ◽  
Author(s):  
Nenad Tomašić ◽  
Štefica Kampić ◽  
Iva Cindrić ◽  
Kristina Pikelj ◽  
Mavro Lučić ◽  
...  

AbstractThe adsorption properties in terms of cation exchange capacity and their relation to the soil and sediment constituents (clay minerals, Fe-, Mn-, and Al-oxyhydroxides, organic matter) were investigated in loess, soil-loess transition zone, and soil at four loess-soil sections in North-Western Croatia. Cation exchange capacity of the bulk samples, the samples after oxalate extraction of Fe, Mn and Al, and after removal of organic matter, as well as of the separated clay fraction, was determined using copper ethylenediamine. Cation exchange capacity (pH∼7) of the bulk samples ranges from 5 to 12 cmolc/kg in soil, from 7 to 15 cmolc/kg in the soil-loess transition zone, and from 12 to 20 cmolc/kg in loess. Generally, CEC values increase with depth. Oxalate extraction of Fe, Mn, and Al, and removal of organic matter cause a CEC decrease of 3–38% and 8–55%, respectively, proving a considerable influence of these constituents to the bulk CEC values. In the separated clay fraction (<2 μm) CEC values are up to several times higher relative to those in the bulk samples. The measured CEC values of the bulk samples generally correspond to the clay mineral content identified. Also, a slight increase in muscovite/illite content with depth and the vermiculite occurrence in the loess horizon are concomitant with the CEC increase in deeper horizons, irrespective of the sample pretreatment.


2012 ◽  
Vol 500 ◽  
pp. 142-148 ◽  
Author(s):  
Wen Xing Lü ◽  
Hong Jiang Zhang ◽  
Yu He Wu ◽  
Jin Hua Cheng ◽  
Jian Qiang Li ◽  
...  

Through the research and sampling analysis on different plant hedgerow in sloped farmland in Three Gorges reservoir area, we will conduct research on the impact of plant hedgerow in Three Gorges on the chemicophysical properties of soil and soil erosion. The results show that the plant hedgerow mainly composed by Morus alba, Citrus reticulata, Zanthoxylum bungeanum, Vitex negundoand Begonia fimbristipula can decrease the soil density as well as sand content and increase soil porosity, soil water content, silt content and clay content to some extent. The organic matter, nitrogen, phosphorus, potassium and cation exchange capacity and other chemical indices of soil in different locations in plant hedgerow indicate as maximum in on-band, minimum in inter-band, middle both upper-band and below-band. In the same slop with no plant hedgerow, the organic matter, nitrogen, phosphorus, potassium and cation exchange capacity and other chemical indices of soil show a trend of increasing from the top to the bottom of the slop, which reveals that these substances own a feature of accumulation by moving to the bottom. The strength of soil anti-corrosion in different plant hedgerow is: Vitex negundoand (79.2%)> Citrus reticulata (36.4%)> Morus alb (22.4%)> Zanthoxylum bungeanum (18.9%)> Begonia fimbristipula (15.3%)> CK (8.7%), and the soil anti-corrosion indices in plant hedgerow are decreasing with the increase of soil immersion time, besides, the former and the latter are 3 times polynomial function. For those 5 plant hedgerows, Vitex negundoand owns the best impact on improving soil chemicophysical properties and reducing soil erosion.


2014 ◽  
Vol 32 (4) ◽  
pp. 526-532 ◽  
Author(s):  
Magdalena Król ◽  
Justyna Morawska ◽  
Włodzimierz Mozgawa ◽  
Waldemar Pichór

AbstractThe paper investigates the properties of sodium zeolites synthesized using the hydrothermal method under autogenous pressure at low temperature with NaOH solutions of varying concentrations. During this modification, zeolites X, Na-P1 and hydroxysodalite were synthesized. The synthesis parameters, and thus, phase composition of resulting samples, significantly affected the specific surface area (SSA) and cation exchange capacity (CEC). SSA increased from 2.9 m2/g to a maximum of 501.2 m2/g, while CEC rose from 16 meq/100 g to a maximum of 500 meq/100 g. The best properties for use as a sorbent were obtained for perlite waste modified with 4.0 M NaOH at 70 °C or 80 °C.


Sign in / Sign up

Export Citation Format

Share Document