Reply to “Comments on ‘Energy Dissipation During Water Drop Impact In Shallow Pools’”

1986 ◽  
Vol 50 (6) ◽  
pp. 1644-1645
Author(s):  
Alfredo G. Ferreira ◽  
Bruce E. Larock ◽  
Michael J. Singer
1985 ◽  
Vol 49 (6) ◽  
pp. 1537-1542 ◽  
Author(s):  
Alfredo G. Ferreira ◽  
Michael J. Singer

2018 ◽  
Vol 48 (2) ◽  
pp. 329-341 ◽  
Author(s):  
Xinan Liu

AbstractThe effects of wind on the impact of a single water drop on a deep-water surface are studied experimentally in a wind tunnel. Experiments are performed by varying impacting drop diameters, ranging from 2.5 to 4.1 mm and wind speeds up to 6.7 m s−1. The sequence of splashing events that occurred during drop impacts is recorded with a backlit, cinematic shadowgraph technique. The experimental results show that for low wind speeds, an asymmetrical crown forms on the leeward of the periphery of the colliding region after the drop hits the water surface, while a wave swell forms on the windward. Secondary droplets are generated from the crown rim. For high wind speeds with large drop diameters, ligaments are generated from the crown rim on the leeward of the drop impact site. The ligaments grow, coalesce, and fragment into secondary droplets. It is found that both the drag force and surface tension play important roles in the evolution process of the ligaments. The nondimensional K number (K = WeOh−0.4, where We is the Webber number and Oh is the Ohnesorge number) is used to describe the splashing-deposition limit of drop impact. The threshold value of this K number changes with the wind velocity and/or drop impact angle.


2020 ◽  
Vol 117 ◽  
pp. 110138
Author(s):  
Sean T. Beacham ◽  
Christopher F. Tilger ◽  
Matthew A. Oehlschlaeger

Wear ◽  
1978 ◽  
Vol 48 (1) ◽  
pp. 103-119 ◽  
Author(s):  
William F. Adler ◽  
Stephen V. Hooker

2000 ◽  
Vol 68 (2) ◽  
pp. 346-348 ◽  
Author(s):  
Hyun-Sil Kim ◽  
Jae-Seung Kim ◽  
Hyun-Ju Kang ◽  
Sang-Ryul Kim

Stress wave propagation in a coated elastic half-space due to water drop impact is studied by using the Cagniard-de Hoop method. The stresses have singularity at the Rayleigh wavefront whose location and singular behavior are determined from the pressure model and independent of the coating thickness, while reflected waves cause minor changes in amplitudes.


Sign in / Sign up

Export Citation Format

Share Document