Continental United States Atmospheric Wet Calcium Deposition and Soil Inorganic Carbon Stocks

2009 ◽  
Vol 73 (3) ◽  
pp. 989-994 ◽  
Author(s):  
Megan A. Goddard ◽  
Elena A. Mikhailova ◽  
Christopher J. Post ◽  
Mark A. Schlautman ◽  
John M. Galbraith
2020 ◽  
Author(s):  
Sophia Demina ◽  
Viacheslav Vasenev ◽  
Kristina Ivashchenko ◽  
Inna Brianskaia ◽  
Bakhtiyor Pulatov ◽  
...  

<p>Desertification is an important soil treat, affecting soil functions and ecosystem services   in arid and semiarid climate zones. Salinization is one of the principal processes which follows desertification and has a negative impact on soil properties and functions. Carbon sequestration is considered a principle soil function and the decline in soil carbon stocks in one of the main negative consequences of soil degradation. Soil salinization is caused by combination of natural factors (e.g. dry climate condition and high table of mineralized ground waters) and human activities such as improper water management. Globally, soils of the areas affected by salinization are considered to be poor in organic carbon due to low biomass and hampered microbiological activity. However, the contribution of inorganic carbon to the total carbon stocks in these areas can be comparable. Considering that soil inorganic carbon is more stable to mineralization compared to organic carbon, soil carbon stocks in saline landscape shall not be neglected.</p><p>Central Asian regions and especially the Aral Sea basin have been historically affected by desertification enhancing soil salinity. Hungry Steppe (Mirzachul) is an area of historical desertification and salinization, covering around 10000 km<sup>2</sup> at the territories of Uzbekistan, South Kazakhstan and Tajikistan. The region has a sharp continental climate with large seasonal fluctuations. Dry and semidesertic steppe vegetation dominates the natural areas (mainly coincided with high soil salinity), whereas most of the areas is managed to produce cotton, perennial grasses, melons and gourds. Soils are dominated by serozems corresponding to Calcisols in WRB soil classification. The research aimed to analyze the effect of salinization on carbon stocks in Hungry Steppe. To achieve this aim, soil carbon stocks were estimated at the four collective farms, referred as Water Consumer Assiociations (WCAs) or ‘shirkats’ in Syrdarya province: Khavast district in Yangier WCA, Mirzaobod district in Beruniy WCA  Oq Oltin district in Andijan WCA and Syrdarya district in Sobir  Rakhimov WCA. The selected sites belonged to different in land quality classes, based on the land evaluation survey carried out by the melioration expedition of the Ministry of Agriculture and Water Resources of Uzbekistan in 201,  from the lowest (Mirzaobod) to the highest (S. Rahimov). Soil pH, electroconductivity, chlorides, organic and inorganic carbon stocks and total nitrogen stocks were estimated for each of the areas. Although the internal variability in the analyzed parameters was high we clearly showed the highest stocks of soil inorganic carbon in the most salinized area, whereas the highest stocks of organic carbon were shown for the most fertile lands. However, we didn’t ding significant difference in the total carbon stocks between the sites. It can be concluded that desertification has more effect on the redistribution of organic and inorganic forms of carbon, rather than on the total carbon stocks.</p><p><strong>Acknowledgements </strong>The experimental research was performed with the support of the Russian Foundation for Basic Research, Project # 18-54-41004 and Ministry of Innovation development of the Republic of Uzbekistan, Project # MRU-SQV 86/2017. Data analysis and mapping was supported by the RUDN project “5-100”.</p>


2017 ◽  
Vol 599-600 ◽  
pp. 1445-1453 ◽  
Author(s):  
Ren-Min Yang ◽  
Fan Yang ◽  
Fei Yang ◽  
Lai-Ming Huang ◽  
Feng Liu ◽  
...  

Tellus B ◽  
2007 ◽  
Vol 59 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Megan A. Goddard ◽  
Elena A. Mikhailova ◽  
J. Post Christopher ◽  
Mark A. Schlautman

Tellus B ◽  
2007 ◽  
Vol 59 (1) ◽  
Author(s):  
Megan A. Goddard ◽  
Elena A. Mikhailova ◽  
Christopher J. Post ◽  
Mark A. Schlautman

2020 ◽  
Author(s):  
Shangshi Liu ◽  
Luhong Zhou ◽  
He Li ◽  
Xia Zhao ◽  
Yankun Zhu ◽  
...  

<p>Widespread shrub encroachment in global drylands may increase plant biomass and change soil organic carbon stocks of grassland ecosystems. However, the response of soil inorganic carbon (SIC), which is a major component of dryland carbon pools, to this vegetation shift remains unknown. Here, we conducted a systematic field survey in 75 pairs of shrub-encroached grassland and control plots at 25 sites in the grasslands of the Inner Mongolia Plateau to evaluate how shrub encroachment affects SIC density (SICD) in these ecosystems. We found that shrub encroachment significantly reduced SICD in the upper 100 cm, especially in the subsurface soil (20-50 cm layer). The magnitude of SICD changes was related to the change in soil pH, shrub patch size, and initial SICD, reflecting that the reduction in SICD might be attributed to the shrub encroachment-related soil acidification. Our results also revealed that the lost SIC was mainly released into the atmosphere rather than redistributed into deeper soil layers. Overall, we provide the first evidence for the soil acidification-induced SIC loss caused by shrub encroachment. Our findings highlight the non-negligible role of SIC dynamics in the C budget of shrub-encroached grassland ecosystems and the need to consider these dynamics in terrestrial C cycle research.</p>


2019 ◽  
Vol 108 (2) ◽  
pp. 678-686 ◽  
Author(s):  
Shangshi Liu ◽  
Luhong Zhou ◽  
He Li ◽  
Xia Zhao ◽  
Yuanhe Yang ◽  
...  

2019 ◽  
Vol 186 ◽  
pp. 36-41 ◽  
Author(s):  
Xinliang Dong ◽  
Bhupinder Pal Singh ◽  
Guitong Li ◽  
Qimei Lin ◽  
Xiaorong Zhao

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 83
Author(s):  
Sihan Wang ◽  
Weiwei Lu ◽  
Fangchao Zhang

Afforestation is a strategy to protect croplands and to sequestrate carbon in coastal areas. In addition, inorganic carbon is a considerable constitute of the coastal soil carbon pool. However, the vertical distribution and controlling factors of soil inorganic carbon (SIC) in plantations of coastal areas have been rarely studied. We analyzed the SIC content as well as physiochemical properties along soil profiles (0–100 cm) in young (YP) and mature (MP) poplar plantations in coastal eastern China. The soil profile was divided into six layers (0–10, 11–20, 21–40, 41–60, 61–80 and 81–100 cm) and a total of 36 soil samples were formed. The SIC content first increased from 0–10 cm (0.74%) to 11–20 cm (0.92%) and then fluctuated in the YP. In contrast, the SIC content increased with increasing soil depth until 40 cm and then leveled off, and the minimum and maximum appeared at 0–10 cm (0.54%) and 81–100 cm (0.98%) respectively in the MP. The soil inorganic carbon density was 12.05 and 12.93 kg m−2 within 0–100 cm in the YP and MP, respectively. Contrary to SIC, soil organic carbon (SOC) first decreased then levelled off within the soil profiles. Compared with the YP, the SIC content decreased 27.8% at 0–10 cm but increased 13.2% at 21–40 cm, meanwhile the SOC content in MP decreased 70.6% and 46.7% at 21–40 cm and 61–80 cm, respectively. The water-soluble Ca2+ and Mg2+ gradually decreased and increased, respectively within the soil profiles. The soil water-soluble Ca2+ increased 18.3% within 41–100 cm; however, the soil water-soluble Mg2+ decreased 32.7% within 21–100 cm in the MP when compared to the YP. Correlation analysis showed that SIC was negatively correlated with SOC, but positively correlated with soil pH and water-soluble Mg2+. Furthermore, structural equation modeling (SEM) indicated that SOC was the most important factor influencing the SIC content in the studied poplar plantations, indicating SOC sequestration promoted the dissolution of SIC. Therefore, our study highlights the trade-off between SIC and SOC in poplar plantations of coastal Eastern China.


Sign in / Sign up

Export Citation Format

Share Document