shrub encroachment
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 76)

H-INDEX

33
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Andrea De Toma ◽  
Marta Carboni ◽  
Manuele Bazzichetto ◽  
Marco Malavasi ◽  
Maurizio Cutini

AbstractQuestionVegetation in the alpine and treeline ecotone faces changes in both climate and land use. Shrub encroachment is considered an effect of these changes, but it’s still unclear how this effect is mediated by environmental heterogeneity. Our goal is to determine which environmental factors shape the fine-scale spatial distribution and temporal trends of alpine dwarf shrub.LocationThree sites in the Central Apennine, Italy.MethodsWe used a comprehensive set of environmental factors across a broad temporal span to model, at a fine-scale, both (1) the current spatial distribution and (2) the change in shrub cover over the past 60 years.ResultsOur results show that dwarf shrubs have generally increased in our study sites over the past 60 years, yet their distribution is strongly shaped by the joint influence of the fine-scale topography, productivity, land use and micro-climate. In particular, shrubs have been locally favored in areas with harsher alpine environmental constraints and stronger resource limitation. Instead, contrary to expectations, at this fine scale, warmer temperatures and the decline in grazing have not favored shrub encroachment.ConclusionDwarf shrubs appear as a stress-tolerant, pioneer vegetation that is currently distributed mainly over areas that are otherwise sparsely vegetated. It appears that shrubs exhibit poor competitive ability to invade grasslands and, though they have increased overall, they remain restricted to the least productive areas. Fine-scale environmental heterogeneity may strongly influence future responses of dwarf shrubs in changing alpine ecosystems.


2021 ◽  
Vol 308-309 ◽  
pp. 108579
Author(s):  
Xin Liu ◽  
Qianlai Zhuang ◽  
Liming Lai ◽  
Jihua Zhou ◽  
Qinglin Sun ◽  
...  

2021 ◽  
Vol 193 ◽  
pp. 104588
Author(s):  
Robert L. Schooley ◽  
Brandon T. Bestelmeyer ◽  
Casey J. Wagnon ◽  
John M. Coffman

2021 ◽  
Vol 53 ◽  
pp. 101096
Author(s):  
Laura M. Ladwig ◽  
Lukas P. Bell-Dereske ◽  
Kayce C. Bell ◽  
Scott L. Collins ◽  
Donald O. Natvig ◽  
...  

Author(s):  
Paula Estelí Romero Ovalle ◽  
Alejandro Jorge Bisigato ◽  
María Victoria Campanella

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3098
Author(s):  
Irini Soubry ◽  
Xulin Guo

Woody plant encroachment (WPE), the expansion of native and non-native trees and shrubs into grasslands, is a less studied factor that leads to declines in grassland ecosystem health. With the increasing application of remote sensing in grassland monitoring and measuring, it is still difficult to detect WPE at its early stages when its spectral signals are not strong enough. Even at late stages, woody species have strong vegetation characteristics that are commonly categorized as healthy ecosystems. We focus on how shrub encroachment can be detected through remote sensing by looking at the biophysical and spectral properties of the WPE grassland ecosystem, investigating the appropriate season and wavelengths that identify shrub cover, testing the spectral separability of different shrub cover groups and by revealing the lowest shrub cover that can be detected by remote sensing. Biophysical results indicate spring as the best season to distinguish shrubs in our study area. The earliest shrub encroachment can be identified most likely only when the cover reaches between 10% and 25%. A correlation between wavelength spectra and shrub cover indicated four regions that are statistically significant, which differ by season. Furthermore, spectral separability of shrubs increases with their cover; however, good separation is only possible for pure shrub pixels. From the five separability metrics used, Transformed divergence and Jeffries-Matusita distance have better interpretations. The spectral regions for pure shrub pixel separation are slightly different from those derived by correlation and can be explained by the influences from land cover mixtures along our study transect.


Sign in / Sign up

Export Citation Format

Share Document