Year-Round Nitrous Oxide Emissions as Affected by Timing and Method of Dairy Manure Application to Corn

2017 ◽  
Vol 81 (1) ◽  
pp. 166-178 ◽  
Author(s):  
Gustavo Cambareri ◽  
Craig Drury ◽  
John Lauzon ◽  
William Salas ◽  
Claudia Wagner-Riddle
2008 ◽  
Vol 88 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Elizabeth Pattey ◽  
Lynda G Blackburn ◽  
Ian B. Strachan ◽  
Ray Desjardins ◽  
Dave Dow

Nitrous oxide emissions are highly episodic and to accurately quantify them annually, continuous measurements are required. A tower-based micrometeorological measuring system was used on a commercial cattle farm near Cô teau-du-Lac, (QC, Canada) during 2003 and 2004 to quantify N2O emissions associated with the production of edible peas. It was equipped with an ultrasonic anemometer and a fast-response closed-path tunable diode laser. Continuous measurements of N2O fluxes were made during the spring thaw following corn cultivation in summer 2002, then during an edible pea growing season, followed by cattle manure application, cover crop planting and through until after the next spring ploughing. The cumulative N2O emissions of 0.7 kg N2O-N ha-1 during the initial snowmelt period following corn harvest were lower than expected. Sustained and small N2O emissions totalling 1.7 kg N2O-N ha-1 were observed during the growing season of the pea crop. Solid cattle manure applied after the pea harvest generated the largest N2O emissions (1.9 kg N2O-N ha-1 over 10 d) observed during the entire sampling period. N2O emissions associated with the cover crop in the fall were mostly influenced by manure application and totalled 0.8 kg N2O-N ha-1. For the subsequent spring thaw period, N2O emissions were 0.8 kg N2O-N ha-1. This represents approximately 15% of the annual emissions for the edible pea-cover crop system, which totalled 5.6 kg N2O-N ha-1 over the measuring periods. There was little difference in spring thaw N2O emissions between the two growing seasons of corn and edible pea-cover crop. Key words: Nitrous oxide emissions, legumes, snowmelt, dairy manure, tunable diode laser, flux tower


ael ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 190024 ◽  
Author(s):  
Weiquan Luo ◽  
Peter L. O'Brien ◽  
Jerry L. Hatfield

Author(s):  
Vilmar Müller Júnior ◽  
Leoncio de Paula Koucher ◽  
Monique Souza ◽  
Andria Paula Lima ◽  
Claudinei Kurtz ◽  
...  

2013 ◽  
Vol 49 (8) ◽  
pp. 1123-1129 ◽  
Author(s):  
Christopher J. Graham ◽  
Harold M. van Es ◽  
Jeffrey J. Melkonian

2017 ◽  
Author(s):  
Carol Adair ◽  
Heather Darby ◽  
Tyler Goeschel ◽  
Lindsay Barbieri ◽  
Alissa White

A research team at UVM, led by Dr. Carol Adair and Dr. Heather Darby, is evaluating the benefits and drawbacks of four different tillage approaches (conventional, strip, vertical, and no till) and two different methods of manure application (broadcast and injection). The goal is to determine the practices best suited for reducing greenhouse gas emission, improving carbon storage and limiting nitrogen losses. The team measures carbon dioxide and nitrous oxide emissions from the treatments every two weeks or more frequently after events (large rainfall, manure application) using a measuring device called photoacoustic multigas monitor.


2019 ◽  
Vol 11 (6) ◽  
pp. 1624
Author(s):  
Wenchao Cao ◽  
Su Liu ◽  
Zhi Qu ◽  
He Song ◽  
Wei Qin ◽  
...  

Solar greenhouse vegetable fields have been found to be hotspots of nitrous oxide (N2O) emissions in China, mainly due to excessive manure application and irrigation. Pulses of N2O emissions have been commonly reported by field monitoring works conducted in greenhouse fields, though their significance regarding total N2O emissions and the driving mechanism behind them remain poorly understood. N2O fluxes were monitored in situ using a static opaque chamber method in a typical greenhouse vegetable field. Then, laboratory incubations were conducted under different soil moisture and manure application gradients to monitor nitrous oxide emissions and related soil properties, using a robotized incubation system. Field monitoring showed that the occurrence of clear N2O emission bursts closely followed fertilization and irrigation events, accounting for 76.7% of the annual N2O efflux. The soil N2O flux increased exponentially with the water-filled pore space (WFPS), causing extremely high N2O emissions when the WFPS was higher than 60%. During the lab incubation, emission bursts led to N2O peaks within 40 h, synchronously changing with the transit soil NO2−. An integrated analysis of the variations in the gas emission and soil properties indicated that the denitrification of transit NO2− accumulation was the major explanation for N2O emission bursts in the greenhouse filed. Nitrous oxide emission bursts constituted the major portion of the N2O emissions in the Chinese greenhouse soils. Nitrite (NO2−) denitrification triggered by fertilization and irrigation was responsible for these N2O emission pulses. Our results clarified the significance and biogeochemical mechanisms of N2O burst emissions; this knowledge could help us to devise and enact sounder N2O mitigation measures, which would be conducive to sustainable development in vegetable greenhouse fields.


Sign in / Sign up

Export Citation Format

Share Document