Financial Applications of the Mahalanobis Distance

Author(s):  
Sebastian Stöckl ◽  
Michael Hanke
Author(s):  
James F. Mancuso

IBM PC compatible computers are widely used in microscopy for applications ranging from control to image acquisition and analysis. The choice of IBM-PC based systems over competing computer platforms can be based on technical merit alone or on a number of factors relating to economics, availability of peripherals, management dictum, or simple personal preference.IBM-PC got a strong “head start” by first dominating clerical, document processing and financial applications. The use of these computers spilled into the laboratory where the DOS based IBM-PC replaced mini-computers. Compared to minicomputer, the PC provided a more for cost-effective platform for applications in numerical analysis, engineering and design, instrument control, image acquisition and image processing. In addition, the sitewide use of a common PC platform could reduce the cost of training and support services relative to cases where many different computer platforms were used. This could be especially true for the microscopists who must use computers in both the laboratory and the office.


2012 ◽  
Vol 57 (3) ◽  
pp. 829-835 ◽  
Author(s):  
Z. Głowacz ◽  
J. Kozik

The paper describes a procedure for automatic selection of symptoms accompanying the break in the synchronous motor armature winding coils. This procedure, called the feature selection, leads to choosing from a full set of features describing the problem, such a subset that would allow the best distinguishing between healthy and damaged states. As the features the spectra components amplitudes of the motor current signals were used. The full spectra of current signals are considered as the multidimensional feature spaces and their subspaces are tested. Particular subspaces are chosen with the aid of genetic algorithm and their goodness is tested using Mahalanobis distance measure. The algorithm searches for such a subspaces for which this distance is the greatest. The algorithm is very efficient and, as it was confirmed by research, leads to good results. The proposed technique is successfully applied in many other fields of science and technology, including medical diagnostics.


2016 ◽  
Vol 140 ◽  
pp. 213-233 ◽  
Author(s):  
Patrick Hamill ◽  
Marco Giordano ◽  
Carolyne Ward ◽  
David Giles ◽  
Brent Holben

2021 ◽  
Vol 1 (1) ◽  
pp. 49-58
Author(s):  
Mårten Schultzberg ◽  
Per Johansson

AbstractRecently a computational-based experimental design strategy called rerandomization has been proposed as an alternative or complement to traditional blocked designs. The idea of rerandomization is to remove, from consideration, those allocations with large imbalances in observed covariates according to a balance criterion, and then randomize within the set of acceptable allocations. Based on the Mahalanobis distance criterion for balancing the covariates, we show that asymptotic inference to the population, from which the units in the sample are randomly drawn, is possible using only the set of best, or ‘optimal’, allocations. Finally, we show that for the optimal and near optimal designs, the quite complex asymptotic sampling distribution derived by Li et al. (2018), is well approximated by a normal distribution.


Sign in / Sign up

Export Citation Format

Share Document