(Operational Risk Assessment of Power System Including Large-Scale Wind Farms)

2013 ◽  
Author(s):  
Dezhi Chen ◽  
Yunting Song ◽  
Yunsi Huang ◽  
Zhongxu Gao ◽  
Anjia Mao
2013 ◽  
Vol 448-453 ◽  
pp. 2535-2539
Author(s):  
Jun Cheng ◽  
Qiang Yang ◽  
Tao Zhu ◽  
Ai Meng Wang ◽  
Xue Feng Hu ◽  
...  

With the scale of the wind farm growing fast, its impact on the power system has become increasingly apparent. So the research has a significant meaning on the characteristics of dynamic stability of the power system which contains wind farms, and the stable operation of the large area interconnected power grid. In this paper it realized the application of the double-fed wind turbine grid model by using power system analysis software PSD-BPA. The analysis of the generator power Angle curve which indicate the state after the failure of N-1 shows as follows: with the wind farms integration on the grid, the damping ratio is decreased slightly but little change after the system failure of N-1, which is still live up to the standard of grid stability.


2013 ◽  
Vol 805-806 ◽  
pp. 393-396
Author(s):  
Zhen Yu Xu ◽  
Zhen Qiao ◽  
Qian He ◽  
Xu Zhang ◽  
Jing Qi Su

With the penetration of wind energy is becoming higher and higher in power grid, it is very important to investigate the impact of wind generations on small signal stability. In this paper, a complete small signal model of wind turbine with direct-drive permanent magnet generator is built to study the impact of large-scale wind farms on the small signal stability of power system. By means of simulation and eigenvalue analysis, an actual power system is investigated, and the damping characteristic of power grid under different wind power penetration is discussed.


2013 ◽  
Vol 765-767 ◽  
pp. 2579-2585
Author(s):  
Min Jing Yang ◽  
Yan Li ◽  
Jin Yu Wen ◽  
Chun Fang Liu ◽  
Min Jie Zhu ◽  
...  

The high penetration of doubly-fed induction generators (DFIGs) entails a change in dynamics and operational characteristics of the power system, thus this paper investigates the small signal stability of the large-scale wind farm with DFIGs. The GE 1.5MW DFIG is modeled in power system analysis software package (PSASP), and a large-scale wind farm with DFIGs is established. Then, the two-area test system with four generators is applied to assess the effect of the large wind farm on power system inter-area oscillatory mode in which the penetration and the installation site of the wind farm are considered. Finally, the simulation results indicate that abundant penetration of DFIG-based wind power will improve the inter-area oscillatory, and the integration of wind farms with DFIGs in the receiving area makes the inter-area mode highly damped.


2013 ◽  
Vol 291-294 ◽  
pp. 407-414 ◽  
Author(s):  
Guo Peng Zhou ◽  
Fu Feng Miao ◽  
Xi Sheng Tang ◽  
Tao Wu ◽  
Shan Ying Li ◽  
...  

The output power of wind farms has significant randomness and variability, which results in adverse impacts on power system frequency stability. This paper extracts wind power fluctuation feature with the HHT (Hilbert-Huang Transform) method. Firstly, the original wind power data was decomposed into several IMFs (Intrinsic Mode Functions) and a tendency component by using the EMD (Empirical Mode Decomposition) method. Secondly, the instantaneous frequency of each IMF was calculated. On this basis, taking a WSCC 9-bus power system as benchmark, the impact on power system frequency caused by wind power fluctuation was simulated in a real-time simulation platform, and the key component which results in the frequency deviation was found. The simulation results validate the wind power fluctuation impacts on frequency deviation, underlying the following study on power system frequency stability under the situation of large-scale intermittent generation access into the grid.


Sign in / Sign up

Export Citation Format

Share Document