scholarly journals Tie the Straps: Uniform Bootstrap Confidence Bands for Bounded Influence Curve Estimators

2013 ◽  
Author(s):  
Wolfgang K. HHrdle ◽  
Ya'acov Ritov ◽  
Weining Wang



Author(s):  
Russell Cheng

Parametric bootstrapping (BS) provides an attractive alternative, both theoretically and numerically, to asymptotic theory for estimating sampling distributions. This chapter summarizes its use not only for calculating confidence intervals for estimated parameters and functions of parameters, but also to obtain log-likelihood-based confidence regions from which confidence bands for cumulative distribution and regression functions can be obtained. All such BS calculations are very easy to implement. Details are also given for calculating critical values of EDF statistics used in goodness-of-fit (GoF) tests, such as the Anderson-Darling A2 statistic whose null distribution is otherwise difficult to obtain, as it varies with different null hypotheses. A simple proof is given showing that the parametric BS is probabilistically exact for location-scale models. A formal regression lack-of-fit test employing parametric BS is given that can be used even when the regression data has no replications. Two real data examples are given.



1991 ◽  
Vol 52 (1-3) ◽  
pp. 147-166 ◽  
Author(s):  
Jati K. Sengupta


Author(s):  
Jan Beran ◽  
Britta Steffens ◽  
Sucharita Ghosh

AbstractWe consider nonparametric regression for bivariate circular time series with long-range dependence. Asymptotic results for circular Nadaraya–Watson estimators are derived. Due to long-range dependence, a range of asymptotically optimal bandwidths can be found where the asymptotic rate of convergence does not depend on the bandwidth. The result can be used for obtaining simple confidence bands for the regression function. The method is illustrated by an application to wind direction data.



2019 ◽  
Vol 29 (3) ◽  
pp. 778-796 ◽  
Author(s):  
Patrick Taffé

Recently, a new estimation procedure has been developed to assess bias and precision of a new measurement method, relative to a reference standard. However, the author did not develop confidence bands around the bias and standard deviation curves. Therefore, the goal in this paper is to extend this methodology in several important directions. First, by developing simultaneous confidence bands for the various parameters estimated to allow formal comparisons between different measurement methods. Second, by proposing a new index of agreement. Third, by providing a series of new graphs to help the investigator to assess bias, precision, and agreement between the two measurement methods. The methodology requires repeated measurements on each individual for at least one of the two measurement methods. It works very well to estimate the differential and proportional biases, even with as few as two to three measurements by one of the two methods and only one by the other. The repeated measurements need not come from the reference standard but from either measurement methods. This is a great advantage as it may sometimes be more feasible to gather repeated measurements with the new measurement method.



Technometrics ◽  
2005 ◽  
Vol 47 (3) ◽  
pp. 364-371 ◽  
Author(s):  
F Lombard


1990 ◽  
Vol 44 (1-2) ◽  
pp. 107-126 ◽  
Author(s):  
Franco Peracchi




Sign in / Sign up

Export Citation Format

Share Document