Time-Frequency Linkages and Co-Movements between the Euro and European Stock Market: A Continuous Wavelet Analysis.

2017 ◽  
Author(s):  
Timotheos Paraskevopoulos ◽  
Peter N. Posch
Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 119
Author(s):  
Tao Wang ◽  
Changhua Lu ◽  
Yining Sun ◽  
Mei Yang ◽  
Chun Liu ◽  
...  

Early detection of arrhythmia and effective treatment can prevent deaths caused by cardiovascular disease (CVD). In clinical practice, the diagnosis is made by checking the electrocardiogram (ECG) beat-by-beat, but this is usually time-consuming and laborious. In the paper, we propose an automatic ECG classification method based on Continuous Wavelet Transform (CWT) and Convolutional Neural Network (CNN). CWT is used to decompose ECG signals to obtain different time-frequency components, and CNN is used to extract features from the 2D-scalogram composed of the above time-frequency components. Considering the surrounding R peak interval (also called RR interval) is also useful for the diagnosis of arrhythmia, four RR interval features are extracted and combined with the CNN features to input into a fully connected layer for ECG classification. By testing in the MIT-BIH arrhythmia database, our method achieves an overall performance of 70.75%, 67.47%, 68.76%, and 98.74% for positive predictive value, sensitivity, F1-score, and accuracy, respectively. Compared with existing methods, the overall F1-score of our method is increased by 4.75~16.85%. Because our method is simple and highly accurate, it can potentially be used as a clinical auxiliary diagnostic tool.


2010 ◽  
Vol 49 (03) ◽  
pp. 230-237 ◽  
Author(s):  
K. Lweesy ◽  
N. Khasawneh ◽  
M. Fraiwan ◽  
H. Wenz ◽  
H. Dickhaus ◽  
...  

Summary Background: The process of automatic sleep stage scoring consists of two major parts: feature extraction and classification. Features are normally extracted from the polysomno-graphic recordings, mainly electroencephalograph (EEG) signals. The EEG is considered a non-stationary signal which increases the complexity of the detection of different waves in it. Objectives: This work presents a new technique for automatic sleep stage scoring based on employing continuous wavelet transform (CWT) and linear discriminant analysis (LDA) using different mother wavelets to detect different waves embedded in the EEG signal. Methods: The use of different mother wave-lets increases the ability to detect waves in the EEG signal. The extracted features were formed based on CWT time frequency entropy using three mother wavelets, and the classification was performed using the linear discriminant analysis. Thirty-two data sets from the MIT-BIH database were used to evaluate the performance of the proposed method. Results: Features of a single EEG signal were extracted successfully based on the time frequency entropy using the continuous wavelet transform with three mother wavelets. The proposed method has shown to outperform the classification based on a CWT using a single mother wavelet. The accuracy was found to be 0.84, while the kappa coefficient was 0.78. Conclusions: This work has shown that wavelet time frequency entropy provides a powerful tool for feature extraction for the non-stationary EEG signal; the accuracy of the classification procedure improved when using multiple wavelets compared to the use of single wavelet time frequency entropy.


2021 ◽  
Author(s):  
Matthew Wolfe ◽  
Da Huo ◽  
Henry Ruiz-Guzman ◽  
Brody Teare ◽  
Tyler Adams ◽  
...  

Abstract AimsMany governments and companies have committed to moving to net-zero emissions by 2030 or 2050 to tackle climate change, which require the development of new carbon capture and sequestration/storage (CCS) techniques. A proposed method of sequestration is to deposit carbon in soils as plant matter including root mass and root exudates. Adding perennial traits such as rhizomes to crops as part of a sequestration strategy would result in annual crop regrowth from rhizome meristems rather than requiring replanting from seeds which would in turn encourage no-till agricultural practices. Integrating these traits into productive agriculture requires a belowground phenotyping method compatible with high throughput breeding and selection methods (i.e., is rapid, inexpensive, reliable, and non-invasive), however none currently exist. MethodsGround penetrating radar (GPR) is a non-invasive subsurface sensing technology that shows potential as a phenotyping technique. In this study, a prototype GPR antenna array was used to scan roots of the perennial sorghum hybrid, PSH09TX15. A-scan level time-domain analyses and B-scan level time/frequency analyses using the continuous wavelet transform were utilized to extract features of interest from the acquired radargrams. ResultsOf six A-scan diagnostic indices examined, the standard deviation of signal amplitude correlated most significantly with belowground biomass. Time frequency analysis using the continuous wavelet transform yielded high correlations of B-scan features with belowground biomass. ConclusionThese results demonstrate that continued refinement of GPR data analysis workflows should yield a highly applicable phenotyping tool for breeding efforts in environments where selection is otherwise impractical on a large scale.


Sign in / Sign up

Export Citation Format

Share Document