Database Systems Performance Evaluation for IoT Applications

Author(s):  
Christodoulos Asiminidis ◽  
George Kokkonis ◽  
Sotirios Kontogiannis
2018 ◽  
Vol 10 (06) ◽  
pp. 01-14 ◽  
Author(s):  
Christodoulos Asiminidis ◽  
George Kokkonis ◽  
Sotirios Kontogiannis

2014 ◽  
Vol 13 (9) ◽  
pp. 4859-4867
Author(s):  
Khaled Saleh Maabreh

Distributed database management systems manage a huge amount of data as well as large and increasingly growing number of users through different types of queries. Therefore, efficient methods for accessing these data volumes will be required to provide a high and an acceptable level of system performance.  Data in these systems are varying in terms of types from texts to images, audios and videos that must be available through an optimized level of replication. Distributed database systems have many parameters like data distribution degree, operation mode and the number of sites and replication. These parameters have played a major role in any performance evaluation study. This paper investigates the main parameters that may affect the system performance, which may help with configuring the distributed database system for enhancing the overall system performance.


2020 ◽  
Vol 29 (6) ◽  
pp. 1223-1241
Author(s):  
Alexander van Renen ◽  
Lukas Vogel ◽  
Viktor Leis ◽  
Thomas Neumann ◽  
Alfons Kemper

AbstractI/O latency and throughput are two of the major performance bottlenecks for disk-based database systems. Persistent memory (PMem) technologies, like Intel’s Optane DC persistent memory modules, promise to bridge the gap between NAND-based flash (SSD) and DRAM, and thus eliminate the I/O bottleneck. In this paper, we provide the first comprehensive performance evaluation of PMem on real hardware in terms of bandwidth and latency. Based on the results, we develop guidelines for efficient PMem usage and four optimized low-level building blocks for PMem applications: log writing, block flushing, in-place updates, and coroutines for write latency hiding.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1478 ◽  
Author(s):  
Alireza Hassani ◽  
Alexey Medvedev ◽  
Pari Delir Haghighi ◽  
Sea Ling ◽  
Arkady Zaslavsky ◽  
...  

As IoT grows at a staggering pace, the need for contextual intelligence is a fundamental and critical factor for IoT intelligence, efficiency, effectiveness, performance, and sustainability. As the standardisation efforts for IoT are fast progressing, efforts in standardising context management platforms led by the European Telecommunications Standards Institute (ETSI) are gaining more attention from both academic and industrial research organizations. These standardisation endeavours will enable intelligent interactions between ‘things’, where things could be devices, software components, web-services, or sensing/actuating systems. Therefore, having a generic platform to describe and query context is crucial for the future of IoT applications. In this paper, we propose Context Definition and Query Language (CDQL), an advanced approach that enables things to exchange, reuse and share context between each other. CDQL consists of two main parts, namely: context definition model, which is designed to describe situations and high-level context; and Context Query Language (CQL), which is a powerful and flexible query language to express contextual information requirements without considering details of the underlying data structures. An important feature of the proposed query language is its ability to query entities in IoT environments based on their situation in a fully dynamic manner where users can define situations and context entities as part of the query. We exemplify the usage of CDQL on three different smart city use cases to highlight how CDQL can be utilised to deliver contextual information to IoT applications. Performance evaluation has demonstrated scalability and efficiency of CDQL in handling a fairly large number of concurrent context queries.


2019 ◽  
Vol 52 (24) ◽  
pp. 312-317 ◽  
Author(s):  
Harith Kharrufa ◽  
Naveed Salman ◽  
Ma Lei ◽  
A.H. Kemp

Sign in / Sign up

Export Citation Format

Share Document