scholarly journals Improved Control Strategy for Low Voltage Ride Through Capability of DFIG with Grid Code Requirements

Author(s):  
Subramanian Chandrasekaran ◽  
Claudio Rossi ◽  
Domenico Casadei ◽  
Angelo Tani
2021 ◽  
Author(s):  
Xuefeng Qiao ◽  
Lei Chen ◽  
Jingguang Tang ◽  
Meng Ding ◽  
Zekai Zhao

2014 ◽  
Vol 707 ◽  
pp. 329-332
Author(s):  
Li Ling Sun ◽  
Dan Fang

As the number of doubly fed induction generator (DFIG)- based wind-turbine systems continues to increase, wind turbines are required to provide Low Voltage Ride-Through (LVRT) capability, especially under the condition of grid voltage dips. This paper, depending on the operating characteristics of doubly-fed induction generator during grid faults ,deals with a protection and control strategy on rotor-side converter (RSC) to enhance the low voltage ride through capability of a wind turbine driven doubly fed induction generator (DFIG). The simulation and experiment studies demonstrate the correctness of the developed model and the effectiveness of the control strategy for DFIG-based wind-turbine systems under such adverse grid conditions.


2014 ◽  
Vol 556-562 ◽  
pp. 1753-1756
Author(s):  
Ming Guang Zhang ◽  
Xiao Jing Chen

The control strategy based on predictive current is proposed to solve problems that destruct stable operation of grid-connected photovoltaic system during asymmetrical fall. A mathematical model of PV inverter is established to calculate current instruction; a method of tracking based on predictive current is proposed to reduce the fluctuations of 2 times frequency. In the meantime, PV inverter provides reactive power to support voltage recovery according to the depth of grid voltage sags and realize LVRT. The result also shows that the proposed control strategy can reduce wave of DC voltage and provide reactive power to support voltage recovery.


Sign in / Sign up

Export Citation Format

Share Document