Internet of Things for Smart Cities: Challenges, Security and Privacy Issues

2020 ◽  
Author(s):  
Selvakumar Manickam ◽  
Afiqah Kooy
Author(s):  
Martin Victor K ◽  
J. Immanuel Johnraja ◽  
Getzi Jeba Leelipushpam ◽  
J. Jebaveerasingh Jebadurai ◽  
I. Bildass Santhosam

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Irfan Muhammad ◽  
Hirley Alves ◽  
Onel Alcaraz López ◽  
Matti Latva-aho

The Internet of Things (IoT) facilitates physical things to detect, interact, and execute activities on-demand, enabling a variety of applications such as smart homes and smart cities. However, it also creates many potential risks related to data security and privacy vulnerabilities on the physical layer of cloud-based Internet of Things (IoT) networks. These can include different types of physical attacks such as interference, eavesdropping, and jamming. As a result, quality-of-service (QoS) provisioning gets difficult for cloud-based IoT. This paper investigates the statistical QoS provisioning of a four-node cloud-based IoT network under security, reliability, and latency constraints by relying on the effective capacity model to offer enhanced QoS for IoT networks. Alice and Bob are legitimate nodes trying to communicate with secrecy in the considered scenario, while an eavesdropper Eve overhears their communication. Meanwhile, a friendly jammer, which emits artificial noise, is used to degrade the wiretap channel. By taking advantage of their multiple antennas, Alice implements transmit antenna selection, while Bob and Eve perform maximum-ratio combining. We further assume that Bob decodes the artificial noise perfectly and thus removes its contribution by implementing perfect successive interference cancellation. A closed-form expression for an alternative formulation of the outage probability, conditioned upon the successful transmission of a message, is obtained by considering adaptive rate allocation in an ON-OFF transmission. The data arriving at Alice’s buffer are modeled by considering four different Markov sources to describe different IoT traffic patterns. Then, the problem of secure throughput maximization is addressed through particle swarm optimization by considering the security, latency, and reliability constraints. Our results evidence the considerable improvements on the delay violation probability by increasing the number of antennas at Bob under strict buffer constraints.


Author(s):  
Muawya N. Al Dalaien ◽  
Ameur Bensefia ◽  
Salam A. Hoshang ◽  
Abdul Rahman A. Bathaqili

In recent years the Internet of Things (IoT) has rapidly become a revolutionary technological invention causing significant changes to the way both corporate computing systems, and even household gadgets and appliances, are designed and manufactured. The aim of this chapter is to highlight the security and privacy issues that may affect the evolution of IoT technology. The privacy issues are discussed from customer perspectives: first, the IoT privacy concern where the privacy debates on IoT and the IoT privacy that reflected from users' perspective based on the examination of previous researches results. In addition, the different architectures for IoT are discussed. Finally, the chapter discusses the IoT security concern by collecting, analyzing and presenting the major IoT security concerns in the literature as well as providing some potential solutions to these concerns.


Author(s):  
S. R. Mani Sekhar ◽  
Sharmitha S. Bysani ◽  
Vasireddy Prabha Kiranmai

Security and privacy issues are the challenging areas in the field of internet of things (IoT) and fog computing. IoT and fog has become an involving technology allowing major changes in the field of information systems and communication systems. This chapter provides the introduction of IoT and fog technology with a brief explanation of how fog is overcoming the challenges of cloud computing. Thereafter, the authors discuss the different security and privacy issues and its related solutions. Furthermore, they present six different case studies which will help the reader to understand the platform of IoT in fog.


Author(s):  
G. Rama Subba Reddy ◽  
K. Rangaswamy ◽  
Malla Sudhakara ◽  
Pole Anjaiah ◽  
K. Reddy Madhavi

Internet of things (IoT) has given a promising chance to construct amazing industrial frameworks and applications by utilizing wireless and sensor devices. To support IIoT benefits efficiently, fog computing is typically considered as one of the potential solutions. Be that as it may, IIoT services still experience issues such as high-latency and unreliable connections between cloud and terminals of IIoT. In addition to this, numerous security and privacy issues are raised and affect the users of the distributed computing environment. With an end goal to understand the improvement of IoT in industries, this chapter presents the current research of IoT along with the key enabling technologies. Further, the architecture and features of fog computing towards the fog-assisted IoT applications are presented. In addition to this, security and protection threats along with safety measures towards the IIoT applications are discussed.


Author(s):  
K. S. Nirmala Bai

The significant way of using the technology relies on the effective way of utilizing and regenerating the resources. Technology advancements increase day by day in each and every sector including construction, automobile, manufacture, production, bio-medical sciences and home appliances. The use of wireless protocols that bridges the gap with the Security and Privacy Issues in Internet of Things has been drastically in demand as always. Ipv6, IEEE 802.15.4, WirelessHart had played a vital role in the field of Internet of Things. Their impact can be further advanced with the specifications designed in Wireless Protocols. Robust and more secure bits preserving communication protocol leading the earlier protocols used.


Sign in / Sign up

Export Citation Format

Share Document