scholarly journals Secure Rate Control and Statistical QoS Provisioning for Cloud-Based IoT Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Irfan Muhammad ◽  
Hirley Alves ◽  
Onel Alcaraz López ◽  
Matti Latva-aho

The Internet of Things (IoT) facilitates physical things to detect, interact, and execute activities on-demand, enabling a variety of applications such as smart homes and smart cities. However, it also creates many potential risks related to data security and privacy vulnerabilities on the physical layer of cloud-based Internet of Things (IoT) networks. These can include different types of physical attacks such as interference, eavesdropping, and jamming. As a result, quality-of-service (QoS) provisioning gets difficult for cloud-based IoT. This paper investigates the statistical QoS provisioning of a four-node cloud-based IoT network under security, reliability, and latency constraints by relying on the effective capacity model to offer enhanced QoS for IoT networks. Alice and Bob are legitimate nodes trying to communicate with secrecy in the considered scenario, while an eavesdropper Eve overhears their communication. Meanwhile, a friendly jammer, which emits artificial noise, is used to degrade the wiretap channel. By taking advantage of their multiple antennas, Alice implements transmit antenna selection, while Bob and Eve perform maximum-ratio combining. We further assume that Bob decodes the artificial noise perfectly and thus removes its contribution by implementing perfect successive interference cancellation. A closed-form expression for an alternative formulation of the outage probability, conditioned upon the successful transmission of a message, is obtained by considering adaptive rate allocation in an ON-OFF transmission. The data arriving at Alice’s buffer are modeled by considering four different Markov sources to describe different IoT traffic patterns. Then, the problem of secure throughput maximization is addressed through particle swarm optimization by considering the security, latency, and reliability constraints. Our results evidence the considerable improvements on the delay violation probability by increasing the number of antennas at Bob under strict buffer constraints.

The future of Internet of Things (IoT) is already upon us. The Internet of Things (IoT) is the ability to provide everyday devices with a way of identification and another way for communication with each other. The spectrum of IoT application domains is very large including smart homes, smart cities, wearables, e-health, etc. Consequently, tens and even hundreds of billions of devices will be connected. Such devices will have smart capabilities to collect, analyze and even make decisions without any human interaction. Security is a supreme requirement in such circumstances, and in particular authentication is of high interest given the damage that could happen from a malicious unauthenticated device in an IoT system. While enjoying the convenience and efficiency that IoT brings to us, new threats from IoT also have emerged. There are increasing research works to ease these threats, but many problems remain open. To better understand the essential reasons of new threats and the challenges in current research, this survey first proposes the concept of “IoT features”. Then, the security and privacy effects of eight IoT new features were discussed including the threats they cause, existing solutions and challenges yet to be solved.


2020 ◽  
Vol 12 (18) ◽  
pp. 7262
Author(s):  
Israr Ahmad ◽  
Munam Ali Shah ◽  
Hasan Ali Khattak ◽  
Zoobia Ameer ◽  
Murad Khan ◽  
...  

Adoption of the Internet of Things for the realization of smart cities in various domains has been pushed by the advancements in Information Communication and Technology. Transportation, power delivery, environmental monitoring, and medical applications are among the front runners when it comes to leveraging the benefits of IoT for improving services through modern decision support systems. Though with the enormous usage of the Internet of Medical Things, security and privacy become intrinsic issues, thus adversaries can exploit these devices or information on these devices for malicious intents. These devices generate and log large and complex raw data which are used by decision support systems to provide better care to patients. Investigation of these enormous and complicated data from a victim’s device is a daunting and time-consuming task for an investigator. Different feature-based frameworks have been proposed to resolve this problem to detect early and effectively the access logs to better assess the event. But the problem with the existing approaches is that it forces the investigator to manually comb through collected data which can contain a huge amount of irrelevant data. These data are provided normally in textual form to the investigators which are too time-consuming for the investigations even if they can utilize machine learning or natural language processing techniques. In this paper, we proposed a visualization-based approach to tackle the problem of investigating large and complex raw data sets from the Internet of Medical Things. Our contribution in this work is twofold. Firstly, we create a data set through a dynamic behavioral analysis of 400 malware samples. Secondly, the resultant and reduced data set were then visualized most feasibly. This is to investigate an incident easily. The experimental results show that an investigator can investigate large amounts of data in an easy and time-efficient manner through the effective use of visualization techniques.


2021 ◽  
Vol 17 (6) ◽  
pp. 155014772110268
Author(s):  
Xueya Xia ◽  
Sai Ji ◽  
Pandi Vijayakumar ◽  
Jian Shen ◽  
Joel J. P. C. Rodrigues

Internet of Things devices are responsible for collecting and transmitting data in smart cities, assisting smart cities to release greater potential. As Internet of Things devices are increasingly connected to smart cities, security and privacy have gradually become important issues. Recently, research works on mitigating security challenges of Internet of Things devices in smart cities mainly focused on authentication. However, in most of the existing authentication protocols, the trustworthiness evaluation of Internet of Things devices in smart cities is ignored. Considering the trustworthiness evaluation of Internet of Things devices is an important constituent of data source authentication, in this article, a cloud-aided trustworthiness evaluation mechanism is first designed to improve the credibility of the Internet of Things devices in smart cities. Furthermore, aiming at the problem that the user’s privacy is easy to leak in the process of authentication, an anonymous authentication and key agreement scheme based on non-interactive zero knowledge argument is proposed. The proposed scheme can ensure the privacy preservation and data security of Internet of Things devices in smart cities. The security analysis demonstrates that the proposed scheme is secure under q-SDH problem. The experimental simulation indicates that the performance of the proposal is greatly improved compared with other similar schemes.


2020 ◽  
Vol 25 (6) ◽  
pp. 737-745
Author(s):  
Subba Rao Peram ◽  
Premamayudu Bulla

To provide secure and reliable services using the internet of things (IoT) in the smart cities/villages is a challenging and complex issue. A high throughput and resilient services are required to process vast data generated by the smart city/villages that felicitates to run the applications of smart city. To provide security and privacy a scalable blockchain (BC) mechanism is a necessity to integrate the scalable ledger and transactions limit in the BC. In this paper, we investigated the available solutions to improve its scalability and efficiency. However, most of the algorithms are not providing the better solution to achieve scalability for the smart city data. Here, proposed and implemented a hybrid approach to improve the scalability and rate of transactions on BC using practical Byzantine fault tolerance and decentralized public key algorithms. The proposed Normachain is compares our results with the existing model. The results show that the transaction rate got improved by 6.43% and supervision results got improved by 17.78%.


2020 ◽  
Vol 17 (6) ◽  
pp. 2552-2556
Author(s):  
Sarita Simaiya ◽  
Umesh Kumar Lilhore ◽  
Sanjeev Kumar Sharma ◽  
Kamali Gupta ◽  
Vidhu Baggan

A revolutionary technology well into the world of technology has been in the modern world of technology the Internet of Things. Due to continuing increases as nothing more than a consequence of either the rapid development of computing Internet of things-based applications implementations. Many technologies become increasingly embraced throughout compatible devices such as home automation and also smart cities. These IoT applications become operated on both the Internet, whereby information becomes transported publicly between a network to the next, therefore flowing information requires a great deal of further privacy consideration to guarantee IoT applications become reliable Internet of things technologies have been using various techniques of data protection of security and privacy. However, all such modern security systems have always been sufficient to ensure the Internet of things perceived safety. A Blockchain has become a revolutionary authoritative digital technology that really transforms commercial transactions absolutely. This is also a collaborative service that facilitates it uses a variety of features of cybersecurity. Blockchain technology seems to be the missing piece of the puzzle throughout the IoT to address problems of usability, anonymity, including security. Block chain’s crypto algorithms must enable transparency from customers very confidential. Throughout this research article, we introduce an analysis of IoT security concerns; blockchain gets addressed briefly as well as later addresses the security of IoT applications dependent on blockchain technologies.


2020 ◽  
pp. 0-0 ◽  
Author(s):  
Jose Luis Hernandez-Ramos ◽  
Juan Antonio Martinez ◽  
Vincenzo Savarino ◽  
Marco Angelini ◽  
Vincenzo Napolitano ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 115-136
Author(s):  
Katarzyna Szum

Abstract Modern cities face many challenges related to globalisation, metropolisation and digitalisation. The smart city concept, which has been gaining popularity in recent years, is considered an answer to their needs. One of the paradigms of modern smart cities is the Internet of Things. This article aims to identify the main research directions and trends in the scientific literature in the field of Internet-of-Things-based smart cities. The author of the paper conducted a bibliometric analysis of publications from 2012–2021, collected from the Web of Science, Scopus and IEEE Xplore databases. The methodology includes: (i) the selection of databases and key words, (ii) defining search criteria, (iii) data export, creation of an aggregate database and record selection, and (iv) the analysis of the results and identification of the major research trends. The study involved 1019 publications. The last stage of the research process identified the leading countries, institutions, journals, and authors in terms of publication activity, as well as the most frequently occurring terms. The key word analysis allowed identifying five main research directions: IoT application domains in smart cities, IoT architecture for smart cities, energy, security and privacy and data. Within each area, the main research themes have been identified, and selected publications have been reviewed.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4257 ◽  
Author(s):  
Ping Xie ◽  
Ling Xing ◽  
Honghai Wu ◽  
Jung Seo ◽  
Ilsun You

Smart homes can improve the quality of life and be implemented by Internet of Things (IoT) technologies. However, security is a very important issue in smart homes. For this reason, we propose a secrecy transmission protocol for primary user (PU) by selecting friendly jammer in cognitive IoT model. In particular, a secondary transmitter (ST) is selected to transmit secondary signals by the PU’s frequency spectrum, while another ST is chosen to transmit artificial noise to protect the transmission confidentiality of the PU against eavesdropping. Moreover, two selection schemes are presented to confirm the former and the latter ST, and the goal is to optimize the secondary transmission performance and the primary security performance, respectively. For the non-security model and the proposed protocol, we derive the closed-form expressions of the intercept probability and the outage probability for the PU. We also obtain the closed-form expression of outage probability for the secondary user. The numerical results show that the security performance of the PU is significantly enhanced in our protocol compared to the non-security model. In addition, the outage performance of the secondary users is also improved in high secondary transmit SNR region.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Pranav Ratta ◽  
Amanpreet Kaur ◽  
Sparsh Sharma ◽  
Mohammad Shabaz ◽  
Gaurav Dhiman

Internet of Things (IoT) is one of the recent innovations in Information Technology, which intends to interconnect the physical and digital worlds. It introduces a vision of smartness by enabling communication between objects and humans through the Internet. IoT has diverse applications in almost all sectors like Smart Health, Smart Transportation, and Smart Cities, etc. In healthcare applications, IoT eases communication between doctors and patients as the latter can be diagnosed remotely in emergency scenarios through body sensor networks and wearable sensors. However, using IoT in healthcare systems can lead to violation of the privacy of patients. Thus, security should be taken into consideration. Blockchain is one of the trending research topics nowadays and can be applied to the majority of IoT scenarios. Few major reasons for using the Blockchain in healthcare systems are its prominent features, i.e., Decentralization, Immutability, Security and Privacy, and Transparency. This paper’s main objective was to enhance the functionality of healthcare systems using emerging and innovative computer technologies like IoT and Blockchain. So, initially, a brief introduction to the basic concepts of IoT and Blockchain is provided. After this, the applicability of IoT and Blockchain in the medical sector is explored in three major areas—drug traceability, remote patient-monitoring, and medical record management. At last, the challenges of deploying IoT and Blockchain in healthcare systems are discussed.


Sign in / Sign up

Export Citation Format

Share Document