An Enhanced Multivariable Dynamic Time-Delay Discrete Grey Forecasting Model for Predicting China's Carbon Emissions

2021 ◽  
Author(s):  
Li Ye ◽  
Deling Yang ◽  
Yaoguo Dang ◽  
Junjie Wang

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3432 ◽  
Author(s):  
Chun-Cheng Lin ◽  
Rou-Xuan He ◽  
Wan-Yu Liu

Development of technology and economy is often accompanied by surging usage of fossil fuels. Global warming could speed up air pollution and cause floods and droughts, not only affecting the safety of human beings, but also causing drastic economic changes. Therefore, the trend of carbon dioxide emissions and the factors affecting growth of emissions have drawn a lot of attention in all countries in the world. Related studies have investigated many factors that affect carbon emissions such as fuel consumption, transport emissions, and national population. However, most of previous studies on forecasting carbon emissions hardly considered more than two factors. In addition, conventional statistical methods of forecasting carbon emissions usually require some assumptions and limitations such as normal distribution and large dataset. Consequently, this study proposes a two-stage forecasting approach consisting of multivariable grey forecasting model and genetic programming. The multivariable grey forecasting model at the first stage enjoys the advantage of introducing multiple factors into the forecasting model, and can accurately make prediction with only four or more samples. However, grey forecasting may perform worse when the data is nonlinear. To overcome this problem, the second stage is to adopt genetic programming to establish the error correction model to reduce the prediction error. To evaluating performance of the proposed approach, the carbon dioxide emissions in Taiwan from 2000 to 2015 are forecasted and analyzed. Experimental comparison on various combinations of multiple factors shows that the proposed forecasting approach has higher accuracy than previous approaches.



2017 ◽  
Vol 7 (3) ◽  
pp. 376-384 ◽  
Author(s):  
Wenjie Dong ◽  
Sifeng Liu ◽  
Zhigeng Fang ◽  
Xiaoyu Yang ◽  
Qian Hu ◽  
...  

Purpose The purpose of this paper is to clarify several commonly used quality cost models based on Juran’s characteristic curve. Through mathematical deduction, the lowest point of quality cost and the lowest level of quality level (often depicted by qualification rate) can be obtained. This paper also aims to introduce a new prediction model, namely discrete grey model (DGM), to forecast the changing trend of quality cost. Design/methodology/approach This paper comes to the conclusion by means of mathematical deduction. To make it more clear, the authors get the lowest quality level and the lowest quality cost by taking the derivative of the equation of quality cost and quality level. By introducing the weakening buffer operator, the authors can significantly improve the prediction accuracy of DGM. Findings This paper demonstrates that DGM can be used to forecast quality cost based on Juran’s cost characteristic curve, especially when the authors do not have much information or the sample capacity is rather small. When operated by practical weakening buffer operator, the randomness of time series can be obviously weakened and the prediction accuracy can be significantly improved. Practical implications This paper uses a real case from a literature to verify the validity of discrete grey forecasting model, getting the conclusion that there is a certain degree of feasibility and rationality of DGM to forecast the variation tendency of quality cost. Originality/value This paper perfects the theory of quality cost based on Juran’s characteristic curve and expands the scope of application of grey system theory.



Author(s):  
Juan Huang ◽  
Ching-Wu Chu ◽  
Hsiu-Li Hsu

This study aims to make comparisons on different univariate forecasting methods and provides a more accurate short-term forecasting model on the container throughput for rendering a reference to relevant authorities. We collected monthly data regarding container throughput volumes for three major ports in Asia, Shanghai, Singapore, and Busan Ports. Six different univariate methods, including the grey forecasting model, the hybrid grey forecasting model, the multiplicative decomposition model, the trigonometric regression model, the regression model with seasonal dummy variables, and the seasonal autoregressive integrated moving average (SARIMA) model, were used. We found that the hybrid grey forecasting model outperforms the other univariate models. This study’s findings can provide a more accurate short-term forecasting model for container throughput to create a reference for port authorities.



Energy Policy ◽  
2014 ◽  
Vol 65 ◽  
pp. 701-707 ◽  
Author(s):  
Bing Wang ◽  
Xiao-Jie Liang ◽  
Hao Zhang ◽  
Lu Wang ◽  
Yi-Ming Wei


Sign in / Sign up

Export Citation Format

Share Document