Experimental Investigations on the Thermal Performance and Phase Change Hysteresis of Low-Temperature Paraffin/MWCNTs/SDBS Nanocomposite via Dynamic DSC Method

2021 ◽  
Author(s):  
Lu Liu ◽  
Xuelai Zhang ◽  
Xiangwei Lin
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Suk Goo Yoon ◽  
Young Kwon Yang ◽  
Tae Won Kim ◽  
Min Hee Chung ◽  
Jin Chul Park

General cool roof is effective for reduction of cooling load, but it has a problem of increasing heating load. Therefore, the purpose of this study is to complement the disadvantages of the cool roof system by utilizing phase change characteristics of phase change material (PCM). The study was carried out to verify the thermal performance of the PCM cool roof system by measuring the temperature on the top and bottom of the PCM cool roof system by making a miniature model (600 × 600 × 600 mm). PCM was inserted and not inserted, and the temperature difference according to the finish color (brown and white) was compared. As a result, the plate surface temperature using PCM was lower than that without PCM, and time-lag of temperature increase occurred. As a result of the comparison of temperature according to the finish color (brown and white), white showed a low temperature distribution up to 16.35°C. Even at room temperature, white maintained a low temperature distribution of 5.40°C than brown. The use of PCM cool roof system in roof finishes could lower the surface temperature and keep the room temperature low.


2013 ◽  
Vol 12 (3) ◽  
pp. 209-214
Author(s):  
Piotr Stępień ◽  
Zbigniew Rusin ◽  
Przemysław Świercz

The results of investigations of heat flows recorded at the low temperature differential scanning calorimeter (DSC) in the freezing cement mortars soaked with water are presented. Methods for extracting the thermal effects associated with the phase change of water as well as the methods for calculating the weight of ice with reference to the specific process temperature at which the phenomenon occurs are analyzed. It is found that computation assumptions and technical limitations of the calorimeter described in the technical literature can lead to significantly different results of determining the mass of formed ice.


Sign in / Sign up

Export Citation Format

Share Document