Join, Balk, or Jettison? The Effect of Flexibility and Ranking Knowledge in Systems with Batch-Arrivals

2021 ◽  
Author(s):  
Olga Bountali ◽  
Apostolos Burnetas ◽  
Lerzan Ormeci
Keyword(s):  
2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Andrzej Chydzinski ◽  
Blazej Adamczyk

We present an analysis of the number of losses, caused by the buffer overflows, in a finite-buffer queue with batch arrivals and autocorrelated interarrival times. Using the batch Markovian arrival process, the formulas for the average number of losses in a finite time interval and the stationary loss ratio are shown. In addition, several numerical examples are presented, including illustrations of the dependence of the number of losses on the average batch size, buffer size, system load, autocorrelation structure, and time.


2012 ◽  
Vol 55 (3-4) ◽  
pp. 654-665 ◽  
Author(s):  
Nawel K. Arrar ◽  
Natalia V. Djellab ◽  
Jean-Bernard Baillon

Author(s):  
Raphael Ayan Adeleke ◽  
Ibrahim Ismaila Itopa ◽  
Sule Omeiza Bashiru

To curb the spread of contagious diseases and the recent polio outbreak in Nigeria, health departments must set up and operate clinics to dispense medications or vaccines. Residents arrive according to an external (not necessarily Poisson) Arrival process to the clinic. When a resident arrives, he goes to the first workstation, based on his or her information, the resident moves from one workstation to another in the clinic. The queuing network is decomposed by estimating the performance of each workstation using a combination of exact and approximate models. A key contribution of this research is to introduce approximations for workstations with batch arrivals and multiple parallel servers, for workstations with batch service processes and multiple parallel servers, and for self service workstations. We validated the models for likely scenarios using data collected from one of the states vaccination clinics in the country during the vaccination exercises.


1992 ◽  
Vol 24 (3) ◽  
pp. 653-698 ◽  
Author(s):  
Sergei Grishechkin

The M/G/1 queue with batch arrivals and a queueing discipline which is a generalization of processor sharing is studied by means of Crump–Mode–Jagers branching processes. A number of theorems are proved, including investigation of heavy traffic and overloaded queues. Most of the results obtained are also new for the M/G/1 queue with processor sharing. By use of a limiting procedure we also derive new results concerning M/G/1 queues with shortest residual processing time discipline.


Sign in / Sign up

Export Citation Format

Share Document