Deep Learning-Based Microcalcification Detection and Classification of Mammography for Diagnosis of Breast Cancer

2022 ◽  
Author(s):  
Qing Lin ◽  
Wei-Min Tan ◽  
Si-Yuan Zhu ◽  
Yan Huang ◽  
Qin Xiao ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Gabriele Valvano ◽  
Gianmarco Santini ◽  
Nicola Martini ◽  
Andrea Ripoli ◽  
Chiara Iacconi ◽  
...  

Cluster of microcalcifications can be an early sign of breast cancer. In this paper, we propose a novel approach based on convolutional neural networks for the detection and segmentation of microcalcification clusters. In this work, we used 283 mammograms to train and validate our model, obtaining an accuracy of 99.99% on microcalcification detection and a false positive rate of 0.005%. Our results show how deep learning could be an effective tool to effectively support radiologists during mammograms examination.


2019 ◽  
Vol 125 ◽  
pp. 1-6 ◽  
Author(s):  
SanaUllah Khan ◽  
Naveed Islam ◽  
Zahoor Jan ◽  
Ikram Ud Din ◽  
Joel J. P. C Rodrigues

Author(s):  
Gozde A. Tataroglu ◽  
Anil Genc ◽  
Kaan A. Kabakci ◽  
Abdulkerim Capar ◽  
B. Ugur Toreyin ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4373 ◽  
Author(s):  
Zabit Hameed ◽  
Sofia Zahia ◽  
Begonya Garcia-Zapirain ◽  
José Javier Aguirre ◽  
Ana María Vanegas

Breast cancer is one of the major public health issues and is considered a leading cause of cancer-related deaths among women worldwide. Its early diagnosis can effectively help in increasing the chances of survival rate. To this end, biopsy is usually followed as a gold standard approach in which tissues are collected for microscopic analysis. However, the histopathological analysis of breast cancer is non-trivial, labor-intensive, and may lead to a high degree of disagreement among pathologists. Therefore, an automatic diagnostic system could assist pathologists to improve the effectiveness of diagnostic processes. This paper presents an ensemble deep learning approach for the definite classification of non-carcinoma and carcinoma breast cancer histopathology images using our collected dataset. We trained four different models based on pre-trained VGG16 and VGG19 architectures. Initially, we followed 5-fold cross-validation operations on all the individual models, namely, fully-trained VGG16, fine-tuned VGG16, fully-trained VGG19, and fine-tuned VGG19 models. Then, we followed an ensemble strategy by taking the average of predicted probabilities and found that the ensemble of fine-tuned VGG16 and fine-tuned VGG19 performed competitive classification performance, especially on the carcinoma class. The ensemble of fine-tuned VGG16 and VGG19 models offered sensitivity of 97.73% for carcinoma class and overall accuracy of 95.29%. Also, it offered an F1 score of 95.29%. These experimental results demonstrated that our proposed deep learning approach is effective for the automatic classification of complex-natured histopathology images of breast cancer, more specifically for carcinoma images.


Sign in / Sign up

Export Citation Format

Share Document