scholarly journals Embedding calculus knot invariants are of finite type

2017 ◽  
Vol 17 (3) ◽  
pp. 1701-1742 ◽  
Author(s):  
Ryan Budney ◽  
James Conant ◽  
Robin Koytcheff ◽  
Dev Sinha
1996 ◽  
Vol 05 (04) ◽  
pp. 441-461 ◽  
Author(s):  
STAVROS GAROUFALIDIS

Recently Ohtsuki [Oh2], motivated by the notion of finite type knot invariants, introduced the notion of finite type invariants for oriented, integral homology 3-spheres. In the present paper we propose another definition of finite type invariants of integral homology 3-spheres and give equivalent reformulations of our notion. We show that our invariants form a filtered commutative algebra. We compare the two induced filtrations on the vector space on the set of integral homology 3-spheres. As an observation, we discover a new set of restrictions that finite type invariants in the sense of Ohtsuki satisfy and give a set of axioms that characterize the Casson invariant. Finally, we pose a set of questions relating the finite type 3-manifold invariants with the (Vassiliev) knot invariants.


1996 ◽  
Vol 142 ◽  
pp. 39-65 ◽  
Author(s):  
Thang Tu Quoc Le ◽  
Jun Murakami

Kontsevich’s integral is a knot invariant which contains in itself all knot invariants of finite type, or Vassiliev’s invariants. The value of this integral lies in an algebra A0, spanned by chord diagrams, subject to relations corresponding to the flatness of the Knizhnik-Zamolodchikov equation, or the so called infinitesimal pure braid relations [11].


2021 ◽  
Vol 157 (5) ◽  
pp. 997-1021
Author(s):  
Pedro Boavida de Brito ◽  
Geoffroy Horel

We exploit the Galois symmetries of the little disks operads to show that many differentials in the Goodwillie–Weiss spectral sequences approximating the homology and homotopy of knot spaces vanish at a prime $p$ . Combined with recent results on the relationship between embedding calculus and finite-type theory, we deduce that the $(n+1)$ th Goodwillie–Weiss approximation is a $p$ -local universal Vassiliev invariant of degree $\leq n$ for every $n \leq p + 1$ .


2019 ◽  
Vol 30 (10) ◽  
pp. 1950047
Author(s):  
Robin Koytcheff

Bott and Taubes used integrals over configuration spaces to produce finite-type a.k.a. Vassiliev knot invariants. Cattaneo, Cotta-Ramusino and Longoni then used these methods together with graph cohomology to construct “Vassiliev classes” in the real cohomology of spaces of knots in higher-dimensional Euclidean spaces, as first promised by Kontsevich. Here we construct integer-valued cohomology classes in spaces of knots and links in [Formula: see text] for [Formula: see text]. We construct such a class for any integer-valued graph cocycle, by the method of gluing compactified configuration spaces. Our classes form the integer lattice among the previously discovered real cohomology classes. Thus we obtain nontrivial classes from trivalent graph cocycles. Our methods generalize to yield mod-[Formula: see text] classes out of mod-[Formula: see text] graph cocycles, which need not be reductions of classes over the integers.


1994 ◽  
Vol 03 (03) ◽  
pp. 391-405 ◽  
Author(s):  
ROLLAND TRAPP

In this paper we describe a difference sequence technique, hereafter referred to as the twist sequence technique, for studying Vassiliev invariants. This technique is used to show that Vassiliev invariants have polynomial growth on certain sequences of knots. Restrictions of Vassiliev invariants to the sequence of (2, 2i + 1) torus knots are characterized. As a corollary it is shown that genus, crossing number, signature, and unknotting number are not Vassiliev invariants. This characterization also determines the topological information about (2, 2i + 1) torus knots encoded in finite-type invariants. The main result obtained is that the complement of the space of Vassiliev invariants is dense in the space of all numeric knot invariants. Finally, we show that the uniform limit of a sequence of Vassiliev invariants must be a Vassiliev invariant.


1997 ◽  
Vol 06 (03) ◽  
pp. 327-358 ◽  
Author(s):  
A. Kricker ◽  
B. Spence ◽  
I. Aitchison

We characterise the cabling operations on the weight systems of finite type knot invariants. The eigenvectors and eigenvalues of this family of operations are described. The canonical deframing projection for these knot invariants is described over the cable eigenbasis. The action of immanent weight systems on general Feynman diagrams is considered, and the highest eigenvalue cabling eigenvectors are shown to be dual to the immanent weight systems. Using these results, we prove a recent conjecture of Bar-Natan and Garoufalidis on cablings of weight systems.


2012 ◽  
Vol 21 (13) ◽  
pp. 1240001 ◽  
Author(s):  
MICAH WHITNEY CHRISMAN ◽  
VASSILY OLEGOVICH MANTUROV

The present paper produces examples of Gauss diagram formulae for virtual knot invariants which have no analogue in the classical knot case. These combinatorial formulae contain additional information about how a subdiagram is embedded in a virtual knot diagram. The additional information comes from the second author's recently discovered notion of parity. For a parity of flat virtual knots, the new combinatorial formulae are Kauffman finite-type invariants. However, many of the combinatorial formulae possess exotic properties. It is shown that there exists an integer-valued virtualization invariant combinatorial formula of order n for every n (i.e. it is stable under the map which changes the direction of one arrow but preserves the sign). Hence, it is not of Goussarov–Polyak–Viro finite-type. Moreover, every homogeneous Polyak–Viro combinatorial formula admits a decomposition into an "even" part and an "odd" part. For the Gaussian parity, neither part of the formula is of GPV finite-type when it is non-constant on the set of classical knots. In addition, eleven new non-trivial combinatorial formulae of order 2 are presented which are not of GPV finite-type.


2006 ◽  
Vol 15 (01) ◽  
pp. 53-72 ◽  
Author(s):  
BLAKE MELLOR

We extend the notion of intersection graphs for chord diagrams in the theory of finite type knot invariants to chord diagrams for string links. We use our definition to develop weight systems for string links via the adjacency matrix of the intersection graphs, and show that these weight systems are related to the weight systems induced by the Conway and Homfly polynomials.


2009 ◽  
Vol 18 (02) ◽  
pp. 209-235 ◽  
Author(s):  
S. A. GRISHANOV ◽  
V. R. MESHKOV ◽  
V. A. VASSILIEV

Typical examples of textile structures are separated by finite type invariants of knots in non-trivial (in particular, non-orientable) manifolds. A new series of such invariants is described.


Sign in / Sign up

Export Citation Format

Share Document