scholarly journals Boundary value problems for second-order elliptic operators with complex coefficients

2020 ◽  
Vol 13 (6) ◽  
pp. 1897-1938
Author(s):  
Martin Dindoš ◽  
Jill Pipher
2018 ◽  
Vol 30 (3) ◽  
pp. 617-629 ◽  
Author(s):  
Yanping Chen ◽  
Yong Ding

AbstractLet {L=-\operatorname{div}(A\nabla)} be a second-order divergence form elliptic operator and let A be an accretive, {n\times n} matrix with bounded measurable complex coefficients in {{\mathbb{R}}^{n}}. Let {L^{-\frac{\alpha}{2}}} be the fractional integral associated to L for {0<\alpha<n}. For {b\in L_{\mathrm{loc}}({\mathbb{R}}^{n})} and {k\in{\mathbb{N}}}, the k-th order commutator of b and {L^{-\frac{\alpha}{2}}} is given by(L^{-\frac{\alpha}{2}})_{b,k}f(x)=L^{-\frac{\alpha}{2}}((b(x)-b)^{k}f)(x).In the paper, we mainly show that if {b\in\mathrm{BMO}({\mathbb{R}}^{n})}, {0<\lambda<n} and {0<\alpha<n-\lambda}, then {(L^{-\frac{\alpha}{2}})_{b,k}} is bounded from {L^{p,\lambda}} to {L^{q,\lambda}} for {p_{-}(L)<p<q<p_{+}(L)\frac{n-\lambda}{n}} and {\frac{1}{q}=\frac{1}{p}-\frac{\alpha}{n-\lambda}}, where {p_{-}(L)} and {p_{+}(L)} are the two critical exponents for the {L^{p}} uniform boundedness of the semigroup {\{e^{-tL}\}_{t>0}}. Also, we establish the boundedness of the commutator of the fractional integral with Lipschitz function on Morrey spaces. The results encompass what is known for the classical Riesz potentials and elliptic operators with Gaussian domination by the classical heat operator.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Xiongtao Wu ◽  
Wenyu Tao ◽  
Yanping Chen ◽  
Kai Zhu

Let L=-div(A∇) be a second-order divergence form elliptic operator, where A is an accretive n×n matrix with bounded measurable complex coefficients in Rn. In this paper, we mainly establish the Lp boundedness for the commutators generated by b∈Iα(BMO) and the square function related to fractional differentiation for second-order elliptic operators.


Sign in / Sign up

Export Citation Format

Share Document