scholarly journals Fundamental groups of moduli stacks of stable curves of compact type

2009 ◽  
Vol 13 (1) ◽  
pp. 247-276 ◽  
Author(s):  
Marco Boggi
2014 ◽  
Vol 214 ◽  
pp. 53-77 ◽  
Author(s):  
Robin De Jong

AbstractWe prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We show that the Chern form of this line bundle is nonnegative, and we calculate its class in the Picard group of the moduli space of pointed stable curves of compact type. The basic tools are normal functions and biextensions associated to the cohomology of the universal Jacobian.


2014 ◽  
Vol 214 ◽  
pp. 53-77
Author(s):  
Robin De Jong

AbstractWe prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We show that the Chern form of this line bundle is nonnegative, and we calculate its class in the Picard group of the moduli space of pointed stable curves of compact type. The basic tools are normal functions and biextensions associated to the cohomology of the universal Jacobian.


2017 ◽  
Vol 153 (8) ◽  
pp. 1584-1609 ◽  
Author(s):  
Jarod Alper ◽  
Maksym Fedorchuk ◽  
David Ishii Smyth

We prove a general criterion for an algebraic stack to admit a good moduli space. This result may be considered as a generalization of the Keel–Mori theorem, which guarantees the existence of a coarse moduli space for a separated Deligne–Mumford stack. We apply this result to prove that the moduli stacks $\overline{{\mathcal{M}}}_{g,n}(\unicode[STIX]{x1D6FC})$ parameterizing $\unicode[STIX]{x1D6FC}$-stable curves introduced in [J. Alper et al., Second flip in the Hassett–Keel program: a local description, Compositio Math. 153 (2017), 1547–1583] admit good moduli spaces.


2019 ◽  
Vol Volume 3 ◽  
Author(s):  
Felix Janda ◽  
Aaron Pixton

We study some aspects of the $\lambda_g$ pairing on the tautological ring of $M_g^c$, the moduli space of genus $g$ stable curves of compact type. We consider pairing kappa classes with pure boundary strata, all tautological classes supported on the boundary, or the full tautological ring. We prove that the rank of this restricted pairing is equal in the first two cases and has an explicit formula in terms of partitions, while in the last case the rank increases by precisely the rank of the $\lambda_g\lambda_{g - 1}$ pairing on the tautological ring of $M_g$. Comment: 18 pages, 1 figure; v3: journal version; v2: minor revisions to sections 1.1 and 4.1, results unchanged


2008 ◽  
Vol 76 (1) ◽  
pp. 401-418
Author(s):  
Jörg Zintl
Keyword(s):  

Author(s):  
Michael Lönne

AbstractWe give finite presentations for the fundamental group of moduli spaces due to Miranda of smooth Weierstrass curves over $${\mathbf {P}}^1$$ P 1 which extend the classical result for elliptic curves to the relative situation over the projective line. We thus get natural generalisations of $$SL_2{{\mathbb {Z}}}$$ S L 2 Z presented in terms of $$\Bigg (\begin{array}{ll} 1&{}1\\ 0&{}1\end{array} \Bigg )$$ ( 1 1 0 1 ) , $$\Bigg (\begin{array}{ll} 1&{}0\\ {-1}&{}1\end{array} \Bigg )$$ ( 1 0 - 1 1 ) on one hand and the first examples of fundamental groups of moduli stacks of elliptic surfaces on the other.Our approach exploits the natural $${\mathbb {Z}}_2$$ Z 2 -action on Weierstrass curves and the identification of $${\mathbb {Z}}_2$$ Z 2 -fixed loci with smooth hypersurfaces in an appropriate linear system on a projective line bundle over $${{\mathbf {P}}}^1$$ P 1 . The fundamental group of the corresponding discriminant complement can be presented in terms of finitely many generators and relations using methods in the Zariski tradition.


2010 ◽  
Vol 147 (3) ◽  
pp. 877-913 ◽  
Author(s):  
David Ishii Smyth

AbstractWe introduce a sequence of isolated curve singularities, the elliptic m-fold points, and an associated sequence of stability conditions, generalizing the usual definition of Deligne–Mumford stability. For every pair of integers 1≤m<n, we prove that the moduli problem of n-pointed m-stable curves of arithmetic genus one is representable by a proper irreducible Deligne–Mumford stack $\overline {\mathcal {M}}_{1,n}(m)$. We also consider weighted variants of these stability conditions, and construct the corresponding moduli stacks $\overline {\mathcal {M}}_{1,\mathcal {A}}(m)$. In forthcoming work, we will prove that these stacks have projective coarse moduli and use the resulting spaces to give a complete description of the log minimal model program for $\overline {M}_{1,n}$.


2013 ◽  
Vol 50 (1) ◽  
pp. 31-50
Author(s):  
C. Zhang

The purpose of this article is to utilize some exiting words in the fundamental group of a Riemann surface to acquire new words that are represented by filling closed geodesics.


Sign in / Sign up

Export Citation Format

Share Document