scholarly journals $$\pi _1$$ of Miranda moduli spaces of elliptic surfaces

Author(s):  
Michael Lönne

AbstractWe give finite presentations for the fundamental group of moduli spaces due to Miranda of smooth Weierstrass curves over $${\mathbf {P}}^1$$ P 1 which extend the classical result for elliptic curves to the relative situation over the projective line. We thus get natural generalisations of $$SL_2{{\mathbb {Z}}}$$ S L 2 Z presented in terms of $$\Bigg (\begin{array}{ll} 1&{}1\\ 0&{}1\end{array} \Bigg )$$ ( 1 1 0 1 ) , $$\Bigg (\begin{array}{ll} 1&{}0\\ {-1}&{}1\end{array} \Bigg )$$ ( 1 0 - 1 1 ) on one hand and the first examples of fundamental groups of moduli stacks of elliptic surfaces on the other.Our approach exploits the natural $${\mathbb {Z}}_2$$ Z 2 -action on Weierstrass curves and the identification of $${\mathbb {Z}}_2$$ Z 2 -fixed loci with smooth hypersurfaces in an appropriate linear system on a projective line bundle over $${{\mathbf {P}}}^1$$ P 1 . The fundamental group of the corresponding discriminant complement can be presented in terms of finitely many generators and relations using methods in the Zariski tradition.

2021 ◽  
pp. 2150054
Author(s):  
Mattia Galeotti ◽  
Sara Perna

In this paper, we investigate the construction of two moduli stacks of Kummer varieties. The first one is the stack [Formula: see text] of abstract Kummer varieties and the second one is the stack [Formula: see text] of embedded Kummer varieties. We will prove that [Formula: see text] is a Deligne-Mumford stack and its coarse moduli space is isomorphic to [Formula: see text], the coarse moduli space of principally polarized abelian varieties of dimension [Formula: see text]. On the other hand, we give a modular family [Formula: see text] of embedded Kummer varieties embedded in [Formula: see text], meaning that every geometric fiber of this family is an embedded Kummer variety and every isomorphic class of such varieties appears at least once as the class of a fiber. As a consequence, we construct the coarse moduli space [Formula: see text] of embedded Kummer surfaces and prove that it is obtained from [Formula: see text] by contracting the locus swept by a particular linear equivalence class of curves. We conjecture that this is a general fact: [Formula: see text] could be obtained from [Formula: see text] via a contraction for all [Formula: see text].


2013 ◽  
Vol 50 (1) ◽  
pp. 31-50
Author(s):  
C. Zhang

The purpose of this article is to utilize some exiting words in the fundamental group of a Riemann surface to acquire new words that are represented by filling closed geodesics.


Author(s):  
Sooran Kang ◽  
David Pask ◽  
Samuel B.G. Webster

Abstract We compute a presentation of the fundamental group of a higher-rank graph using a coloured graph description of higher-rank graphs developed by the third author. We compute the fundamental groups of several examples from the literature. Our results fit naturally into the suite of known geometrical results about higher-rank graphs when we show that the abelianization of the fundamental group is the homology group. We end with a calculation which gives a non-standard presentation of the fundamental group of the Klein bottle to the one normally found in the literature.


2012 ◽  
Vol 64 (3) ◽  
pp. 573-587 ◽  
Author(s):  
Norio Nawata

Abstract We introduce the fundamental group ℱ(A) of a simple σ-inital C*-algebra A with unique (up to scalar multiple) densely defined lower semicontinuous trace. This is a generalization of Fundamental Group of Simple C*-algebras with Unique Trace I and II by Nawata andWatatani. Our definition in this paper makes sense for stably projectionless C*-algebras. We show that there exist separable stably projectionless C*-algebras such that their fundamental groups are equal to ℝ×+ by using the classification theorem of Razak and Tsang. This is a contrast to the unital case in Nawata and Watatani. This study is motivated by the work of Kishimoto and Kumjian.


Author(s):  
E Arasteh Rad ◽  
Urs Hartl

Abstract This is the 2nd in a sequence of articles, in which we explore moduli stacks of global $\mathfrak{G}$-shtukas, the function field analogs for Shimura varieties. Here $\mathfrak{G}$ is a flat affine group scheme of finite type over a smooth projective curve $C$ over a finite field. Global $\mathfrak{G}$-shtukas are generalizations of Drinfeld shtukas and analogs of abelian varieties with additional structure. We prove that the moduli stacks of global $\mathfrak{G}$-shtukas are algebraic Deligne–Mumford stacks separated and locally of finite type. They generalize various moduli spaces used by different authors to prove instances of the Langlands program over function fields. In the 1st article we explained the relation between global $\mathfrak{G}$-shtukas and local ${{\mathbb{P}}}$-shtukas, which are the function field analogs of $p$-divisible groups. Here ${{\mathbb{P}}}$ is the base change of $\mathfrak{G}$ to the complete local ring at a point of $C$. When ${{\mathbb{P}}}$ is smooth with connected reductive generic fiber we proved the existence of Rapoport–Zink spaces for local ${{\mathbb{P}}}$-shtukas. In the present article we use these spaces to (partly) uniformize the moduli stacks of global $\mathfrak{G}$-shtukas for smooth $\mathfrak{G}$ with connected fibers and reductive generic fiber. This is our main result. It has applications to the analog of the Langlands–Rapoport conjecture for our moduli stacks.


1960 ◽  
Vol 3 (2) ◽  
pp. 186-187
Author(s):  
J. Lipman

The point of this note is to get a lemma which is useful in treating homotopy between paths in a topological space [1].As explained in the reference, two paths joining a given pair of points in a space E are homotopic if there exists a mapping F: I x I →E (I being the closed interval [0,1] ) which deforms one path continuously into the other. In practice, when two paths are homotopic and the mapping F is constructed, then the verification of all its required properties, with the possible exception of continuity, is trivial. The snag occurs when F is a combination of two or three functions on different subsets of I x I. Then the boundary lines between these subsets have to be given special consideration, and although the problems resulting are routine their disposal can involve some tedious calculation and repetition. In the development [l] of the fundamental group of a space, for example, this sort of situation comes up four or five times.


Author(s):  
Jonathan A. Hillman

AbstractWe extend earlier work relating asphericity and Euler characteristics for finite complexes whose fundamental groups have nontrivial torsion free abelian normal subgroups. In particular a finitely presentable group which has a nontrivial elementary amenable subgroup whose finite subgroups have bounded order and with no nontrivial finite normal subgroup must have deficiency at most 1, and if it has a presentation of deficiency 1 then the corresponding 2-complex is aspherical. Similarly if the fundamental group of a closed 4-manifold with Euler characteristic 0 is virtually torsion free and elementary amenable then it either has 2 ends or is virtually an extension of Z by a subgroup of Q, or the manifold is asphencal and the group is virtually poly- Z of Hirsch length 4.


Author(s):  
Koichiro Sawada

Abstract In the present paper, we show that there are at most finitely many isomorphism classes of hyperbolic polycurves (i.e., successive extensions of families of hyperbolic curves) over certain types of fields whose étale fundamental group is isomorphic to a prescribed profinite group.


Sign in / Sign up

Export Citation Format

Share Document