scholarly journals Studies of functional amino acid residues in smooth muscle myosin : mutagenesis of actin binding site

2000 ◽  
Vol 40 (supplement) ◽  
pp. S60
Author(s):  
H. Onishi ◽  
S. Kojima ◽  
K. Konishi ◽  
K. Katoh ◽  
K. Fujiwara ◽  
...  
Cell ◽  
1992 ◽  
Vol 70 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Evelyne Friederich ◽  
Katie Vancompernolle ◽  
Christian Huet ◽  
Marc Goethals ◽  
Joëlle Finidori ◽  
...  

1999 ◽  
Vol 147 (7) ◽  
pp. 1385-1390 ◽  
Author(s):  
Thomas Wendt ◽  
Dianne Taylor ◽  
Terri Messier ◽  
Kathleen M. Trybus ◽  
Kenneth A. Taylor

The structural basis for the phosphoryla- tion-dependent regulation of smooth muscle myosin ATPase activity was investigated by forming two- dimensional (2-D) crystalline arrays of expressed unphosphorylated and thiophosphorylated smooth muscle heavy meromyosin (HMM) on positively charged lipid monolayers. A comparison of averaged 2-D projections of both forms at 2.3-nm resolution reveals distinct structural differences. In the active, thiophosphorylated form, the two heads of HMM interact intermolecularly with adjacent molecules. In the unphosphorylated or inhibited state, intramolecular interactions position the actin-binding interface of one head onto the converter domain of the second head, thus providing a mechanism whereby the activity of both heads could be inhibited.


FEBS Letters ◽  
1983 ◽  
Vol 159 (1-2) ◽  
pp. 211-216 ◽  
Author(s):  
T. Marianne-Pépin ◽  
D. Mornet ◽  
E. Audemard ◽  
R. Kassab

1999 ◽  
Vol 10 (12) ◽  
pp. 4327-4339 ◽  
Author(s):  
Bin Chen ◽  
Anli Li ◽  
Dennis Wang ◽  
Min Wang ◽  
Lili Zheng ◽  
...  

The espins are actin-binding and -bundling proteins localized to parallel actin bundles. The 837-amino-acid “espin” of Sertoli cell–spermatid junctions (ectoplasmic specializations) and the 253-amino-acid “small espin” of brush border microvilli are splice isoforms that share a C-terminal 116-amino-acid actin-bundling module but contain different N termini. To investigate the roles of espin and its extended N terminus, we examined the actin-binding and -bundling properties of espin constructs and the stoichiometry and developmental accumulation of espin within the ectoplasmic specialization. An espin construct bound to F-actin with an approximately threefold higher affinity (K d = ∼70 nM) than small espin and was ∼2.5 times more efficient at forming bundles. The increased affinity appeared to be due to an additional actin-binding site in the N terminus of espin. This additional actin-binding site bound to F-actin with a K d of ∼1 μM, decorated actin stress fiber-like structures in transfected cells, and was mapped to a peptide between the two proline-rich peptides in the N terminus of espin. Espin was detected at ∼4–5 × 106 copies per ectoplasmic specialization, or ∼1 espin per 20 actin monomers and accumulated there coincident with the formation of parallel actin bundles during spermiogenesis. These results suggest that espin is a major actin-bundling protein of the Sertoli cell–spermatid ectoplasmic specialization.


2002 ◽  
Vol 277 (27) ◽  
pp. 24114-24119 ◽  
Author(s):  
Christopher M. Yengo ◽  
Enrique M. De La Cruz ◽  
Lynn R. Chrin ◽  
Donald P. Gaffney ◽  
Christopher L. Berger

1985 ◽  
Vol 101 (1) ◽  
pp. 66-72 ◽  
Author(s):  
M D Schneider ◽  
J R Sellers ◽  
M Vahey ◽  
Y A Preston ◽  
R S Adelstein

We have produced and characterized monoclonal antibodies that label antigenic determinants distributed among three distinct, nonoverlapping peptide domains of the 200-kD heavy chain of avian smooth muscle myosin. Mice were immunized with a partially phosphorylated chymotryptic digest of adult turkey gizzard myosin. Hybridoma antibody specificities were determined by solid-phase indirect radioimmunoassay and immunoreplica techniques. Electron microscopy of rotary-shadowed samples was used to directly visualize the topography of individual [antibody.antigen] complexes. Antibody TGM-1 bound to a 50-kD peptide of subfragment-1 (S-1) previously found to be associated with actin binding and was localized by immunoelectron microscopy to the distal aspect of the myosin head. However, there was no antibody-dependent inhibition of the actin-activated heavy meromyosin ATPase, nor was antibody TGM-1 binding to actin-S-1 complexes inhibited. Antibody TGM-2 detected an epitope of the subfragment-2 (S-2) domain of heavy meromyosin but not the S-2 domain of intact myosin or rod, consistent with recognition of a site exposed by chymotryptic cleavage of the S-2:light meromyosin junction. Localization of TGM-2 to the carboxy-terminus of S-2 was substantiated by immunoelectron microscopy. Antibody TGM-3 recognized an epitope found in the light meromyosin portion of myosin. All three antibodies were specific for avian smooth muscle myosin. Of particular interest is that antibody TGM-1, unlike TGM-3, bound poorly to homogenates of 19-d embryonic smooth muscles. This indicates the expression of different myosin heavy chain epitopes during smooth muscle development.


Sign in / Sign up

Export Citation Format

Share Document