A Deep and Recurrent Architecture for Primate Vocalization Classification

Author(s):  
Robert Müller ◽  
Steffen Illium ◽  
Claudia Linnhoff-Popien
Author(s):  
Iqra Muneer ◽  
Rao Muhammad Adeel Nawab

Cross-Lingual Text Reuse Detection (CLTRD) has recently attracted the attention of the research community due to a large amount of digital text readily available for reuse in multiple languages through online digital repositories. In addition, efficient machine translation systems are freely and readily available to translate text from one language into another, which makes it quite easy to reuse text across languages, and consequently difficult to detect it. In the literature, the most prominent and widely used approach for CLTRD is Translation plus Monolingual Analysis (T+MA). To detect CLTR for English-Urdu language pair, T+MA has been used with lexical approaches, namely, N-gram Overlap, Longest Common Subsequence, and Greedy String Tiling. This clearly shows that T+MA has not been thoroughly explored for the English-Urdu language pair. To fulfill this gap, this study presents an in-depth and detailed comparison of 26 approaches that are based on T+MA. These approaches include semantic similarity approaches (semantic tagger based approaches, WordNet-based approaches), probabilistic approach (Kullback-Leibler distance approach), monolingual word embedding-based approaches siamese recurrent architecture, and monolingual sentence transformer-based approaches for English-Urdu language pair. The evaluation was carried out using the CLEU benchmark corpus, both for the binary and the ternary classification tasks. Our extensive experimentation shows that our proposed approach that is a combination of 26 approaches obtained an F 1 score of 0.77 and 0.61 for the binary and ternary classification tasks, respectively, and outperformed the previously reported approaches [ 41 ] ( F 1 = 0.73) for the binary and ( F 1 = 0.55) for the ternary classification tasks) on the CLEU corpus.


Author(s):  
Dmitry Khilko ◽  
Yury Stepchenkov ◽  
Yury Shikunov ◽  
George Orlov

Author(s):  
Muhammad Zulqarnain ◽  
Rozaida Ghazali ◽  
Muhammad Ghulam Ghouse ◽  
Muhammad Faheem Mushtaq

Text classification has become very serious problem for big organization to manage the large amount of online data and has been extensively applied in the tasks of Natural Language Processing (NLP). Text classification can support users to excellently manage and exploit meaningful information require to be classified into various categories for further use. In order to best classify texts, our research efforts to develop a deep learning approach which obtains superior performance in text classification than other RNNs approaches. However, the main problem in text classification is how to enhance the classification accuracy and the sparsity of the data semantics sensitivity to context often hinders the classification performance of texts. In order to overcome the weakness, in this paper we proposed unified structure to investigate the effects of word embedding and Gated Recurrent Unit (GRU) for text classification on two benchmark datasets included (Google snippets and TREC). GRU is a well-known type of recurrent neural network (RNN), which is ability of computing sequential data over its recurrent architecture. Experimentally, the semantically connected words are commonly near to each other in embedding spaces. First, words in posts are changed into vectors via word embedding technique. Then, the words sequential in sentences are fed to GRU to extract the contextual semantics between words. The experimental results showed that proposed GRU model can effectively learn the word usage in context of texts provided training data. The quantity and quality of training data significantly affected the performance. We evaluated the performance of proposed approach with traditional recurrent approaches, RNN, MV-RNN and LSTM, the proposed approach is obtained better results on two benchmark datasets in the term of accuracy and error rate.


2020 ◽  
Vol 23 (4) ◽  
pp. 544-555 ◽  
Author(s):  
Claire Eschbach ◽  
Akira Fushiki ◽  
Michael Winding ◽  
Casey M. Schneider-Mizell ◽  
Mei Shao ◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Yannan Xing ◽  
Gaetano Di Caterina ◽  
John Soraghan

The combination of neuromorphic visual sensors and spiking neural network offers a high efficient bio-inspired solution to real-world applications. However, processing event- based sequences remains challenging because of the nature of their asynchronism and sparsity behavior. In this paper, a novel spiking convolutional recurrent neural network (SCRNN) architecture that takes advantage of both convolution operation and recurrent connectivity to maintain the spatial and temporal relations from event-based sequence data are presented. The use of recurrent architecture enables the network to have a sampling window with an arbitrary length, allowing the network to exploit temporal correlations between event collections. Rather than standard ANN to SNN conversion techniques, the network utilizes a supervised Spike Layer Error Reassignment (SLAYER) training mechanism that allows the network to adapt to neuromorphic (event-based) data directly. The network structure is validated on the DVS gesture dataset and achieves a 10 class gesture recognition accuracy of 96.59% and an 11 class gesture recognition accuracy of 90.28%.


Sign in / Sign up

Export Citation Format

Share Document