scholarly journals The Assessment of Major Histocompatibility Complex (MHC) Class-I Expression in Different Neuromuscular Diseases

2021 ◽  
Vol Volume 11 ◽  
pp. 61-68
Author(s):  
Maher Kurdi ◽  
Aysha Alshareef ◽  
Ahmed K Bamaga ◽  
Zahir T Fadel ◽  
Moafaq S Alrawaili ◽  
...  
2015 ◽  
Vol 167 (3-4) ◽  
pp. 166-170
Author(s):  
Larissa Sarmento dos Santos ◽  
Juliana Pinto da Silva Mol ◽  
Auricélio Alves de Macedo ◽  
Ana Patrícia Carvalho Silva ◽  
Diego Luiz dos Santos Ribeiro ◽  
...  

1997 ◽  
Vol 8 (1) ◽  
pp. 47-57 ◽  
Author(s):  
E Stang ◽  
J Kartenbeck ◽  
R G Parton

Simian virus 40 (SV40) has been shown to enter mammalian cells via uncoated plasma membrane invaginations. Viral particles subsequently appear within the endoplasmic reticulum. In the present study, we have examined the surface binding and internalization of SV40 by immunoelectron microscopy. We show that SV40 associates with surface pits which have the characteristics of caveolae and are labeled with antibodies to the caveolar marker protein, caveolin-1. SV40 is believed to use major histocompatibility complex (MHC) class I molecules as cell surface receptors. Using a number of MHC class I-specific monoclonal antibodies, we found that both viral infection and association of virus with caveolae were strongly reduced by preincubation with anti-MHC class I antibodies. Because binding of SV40 to MHC class I molecules may induce clustering, we investigated whether antibody cross-linked class I molecules also redistributed to caveolae. Clusters of MHC class I molecules were indeed shown to be specifically associated with caveolin-labeled surface pits. Taken together, the results suggest that SV40 may make use of MHC class I molecule clustering and the caveolae pathway to enter mammalian cells.


1993 ◽  
Vol 13 (3) ◽  
pp. 1554-1564
Author(s):  
A G Frauman ◽  
P Chu ◽  
L C Harrison

The overexpression of major histocompatibility complex (MHC) class I molecules in endocrine epithelial cells is an early feature of autoimmune thyroid disease and insulin-dependent diabetes mellitus, which may reflect a cellular response, e.g., to viruses or toxins. Evidence from a transgenic model in pancreatic beta cells suggests that MHC class I overexpression could play an independent role in endocrine cell destruction. We demonstrate in this study that the transgenic overexpression of an allogeneic MHC class I protein (H-2Kb) linked to the rat thyroglobulin promoter, in H-2Kk mice homozygous for the transgene, leads to thyrocyte atrophy, hypothyroidism, growth retardation, and death. Thyrocyte atrophy occurred in the absence of lymphocytic infiltration. Tolerance to allogeneic class I was revealed by the reduced ability of primed lymphocytes from transgenic mice to lyse H-2Kb target cells in vitro. This nonimmune form of thyrocyte destruction and hypothyroidism recapitulates the beta-cell destruction and diabetes that results from transgenic overexpression of MHC class I molecules in pancreatic beta cells. Thus, we conclude that overexpression of MHC class I molecules may be a general mechanism that directly impairs endocrine epithelial cell viability.


2011 ◽  
Vol 63 (12) ◽  
pp. 821-834 ◽  
Author(s):  
Lasse Eggers Pedersen ◽  
Mikkel Harndahl ◽  
Michael Rasmussen ◽  
Kasper Lamberth ◽  
William T. Golde ◽  
...  

1997 ◽  
Vol 186 (11) ◽  
pp. 1809-1818 ◽  
Author(s):  
Marco Colonna ◽  
Francisco Navarro ◽  
Teresa Bellón ◽  
Manuel Llano ◽  
Pilar García ◽  
...  

Natural killer (NK) cell–mediated lysis is negatively regulated by killer cell inhibitory receptors specific for major histocompatibility complex (MHC) class I molecules. In this study, we characterize a novel inhibitory MHC class I receptor of the immunoglobulin-superfamily, expressed not only by subsets of NK and T cells, but also by B cells, monocytes, macrophages, and dendritic cells. This receptor, called Ig-like transcript (ILT)2, binds MHC class I molecules and delivers a negative signal that inhibits killing by NK and T cells, as well as Ca2+ mobilization in B cells and myelomonocytic cells triggered through the B cell antigen receptor and human histocompatibility leukocyte antigens (HLA)–DR, respectively. In addition, myelomonocytic cells express receptors homologous to ILT2, which are characterized by extensive polymorphism and might recognize distinct HLA class I molecules. These results suggest that diverse leukocyte lineages have adopted recognition of self–MHC class I molecules as a common strategy to control cellular activation during an immune response.


2004 ◽  
Vol 78 (23) ◽  
pp. 13335-13344 ◽  
Author(s):  
Tomek Swigut ◽  
Louis Alexander ◽  
Jennifer Morgan ◽  
Jeff Lifson ◽  
Keith G. Mansfield ◽  
...  

ABSTRACT Functional activities that have been ascribed to the nef gene product of simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) include CD4 downregulation, major histocompatibility complex (MHC) class I downregulation, downregulation of other plasma membrane proteins, and lymphocyte activation. Monkeys were infected experimentally with SIV containing difficult-to-revert mutations in nef that selectively eliminated MHC downregulation but not these other activities. Monkeys infected with these mutant forms of SIV exhibited higher levels of CD8+ T-cell responses 4 to 16 weeks postinfection than seen in monkeys infected with the parental wild-type virus. Furthermore, unusual compensatory mutations appeared by 16 to 32 weeks postinfection which restored some or all of the MHC-downregulating activity. These results indicate that nef does serve to limit the virus-specific CD8 cellular response of the host and that the ability to downregulate MHC class I contributes importantly to the totality of nef function.


Sign in / Sign up

Export Citation Format

Share Document