scholarly journals Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome

2019 ◽  
Vol Volume 14 ◽  
pp. 3177-3188 ◽  
Author(s):  
Hui Song ◽  
Jin Wen ◽  
He Li ◽  
Ya Meng ◽  
Yujia Zhang ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 775
Author(s):  
Ravi Raj Pal ◽  
Vasundhara Rajpal ◽  
Priya Singh ◽  
Shubhini A. Saraf

Cancer causes a considerable amount of mortality in the world, while arthritis is an immunological dysregulation with multifactorial pathogenesis including genetic and environmental defects. Both conditions have inflammation as a part of their pathogenesis. Resistance to anticancer and disease-modifying antirheumatic drugs (DMARDs) happens frequently through the generation of energy-dependent transporters, which lead to the expulsion of cellular drug contents. Thymoquinone (TQ) is a bioactive molecule with anticancer as well as anti-inflammatory activities via the downregulation of several chemokines and cytokines. Nevertheless, the pharmacological importance and therapeutic feasibility of thymoquinone are underutilized due to intrinsic pharmacokinetics, including short half-life, inadequate biological stability, poor aqueous solubility, and low bioavailability. Owing to these pharmacokinetic limitations of TQ, nanoformulations have gained remarkable attention in recent years. Therefore, this compilation intends to critically analyze recent advancements in rheumatoid arthritis and cancer delivery of TQ. This literature search revealed that nanocarriers exhibit potential results in achieving targetability, maximizing drug internalization, as well as enhancing the anti-inflammatory and anticancer efficacy of TQ. Additionally, TQ-NPs (thymoquinone nanoparticles) as a therapeutic payload modulated autophagy as well as enhanced the potential of other drugs when given in combination. Moreover, nanoformulations improved pharmacokinetics, drug deposition, using EPR (enhanced permeability and retention) and receptor-mediated delivery, and enhanced anti-inflammatory and anticancer properties. TQ’s potential to reduce metal toxicity, its clinical trials and patents have also been discussed.


2001 ◽  
Vol 28 (1) ◽  
pp. 89-93 ◽  
Author(s):  
J. R. Garcia-Lozano ◽  
M. F. Gonzalez-Escribano ◽  
A. Valenzuela ◽  
A. Garcia ◽  
A. Nunez-Roldan

Sign in / Sign up

Export Citation Format

Share Document