scholarly journals Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

2013 ◽  
pp. 1269 ◽  
Author(s):  
Heidi Mansour ◽  
Wu ◽  
Zhang ◽  
Don Hayes
2016 ◽  
Vol Volume 10 ◽  
pp. 4017-4030 ◽  
Author(s):  
Hyo-Jung Lee ◽  
Ji-Hyun Kang ◽  
Hong-Goo Lee ◽  
Dong-Wook Kim ◽  
Yun-Seok Rhee ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 26
Author(s):  
Wafaa Alabsi ◽  
Fahad A. Al-Obeidi ◽  
Robin Polt ◽  
Heidi M. Mansour

The purpose of this study was to formulate Lactomorphin (MMP2200) in its pure state as spray-dried(SD) powders, and with the excipient Trehalose as co-spray-dried(co-SD) powders; for intranasal and deep lung administration with Dry Powder Inhalers (DPI). Lactomorphin is a glycopeptide which was developed for the control of moderate to severe pain. Particles were rationally designed and produced by advanced spray drying particle engineering in a closed mode from a dilute organic solution. Comprehensive physicochemical characterization using different analytical techniques was carried out to analyze the particle size, particle morphology, particle surface morphology, solid-state transitions, crystallinity/non-crystallinity, and residual water content. The particle chemical composition was confirmed using attenuated total reflectance-Fourier-transform infrared (ATR-FTIR), and Confocal Raman Microscopy (CRM) confirmed the particles’ chemical homogeneity. The solubility and Partition coefficient (LogP) of Lactomorphin were determined by the analytical and computational methodology and revealed the hydrophilicity of Lactomorphin. A thermal degradation study was performed by exposing samples of solid-state Lactomorphin to a high temperature (62 °C) combined with zero relative humidity (RH) and to a high temperature (62 °C) combined with a high RH (75%) to evaluate the stability of Lactomorphin under these two different conditions. The solid-state processed particles exhibited excellent aerosol dispersion performance with an FDA-approved human DPI device to reach lower airways. The cell viability resazurin assay showed that Lactomorphin is safe up to 1000 μg/mL on nasal epithelium cells, lung cells, endothelial, and astrocyte brain cells.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 535 ◽  
Author(s):  
Edit Benke ◽  
Árpád Farkas ◽  
Piroska Szabó-Révész ◽  
Rita Ambrus

Most of the marketed dry powder inhalation (DPI) products are traditional, carrier-based formulations with low drug concentrations deposited in the lung. However, due to their advantageous properties, their development has become justified. In our present work, we developed an innovative, carrier-based DPI system, which is an interactive physical blend of a surface-modified carrier and a spray-dried drug with suitable shape and size for pulmonary application. Meloxicam potassium, a nonsteroidal anti-inflammatory drug (NSAID), was used as an active ingredient due to its local anti-inflammatory effect and ability to decrease the progression of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). The results of the in vitro and in silico investigations showed high lung deposition in the case of this new formulation, confirming that the interparticle interactions were changed favorably.


Sign in / Sign up

Export Citation Format

Share Document