scholarly journals Parental chronic pain and internalizing symptoms in offspring: the role of adolescents’ social competence – the HUNT study

2018 ◽  
Vol Volume 11 ◽  
pp. 2915-2928 ◽  
Author(s):  
Jannike Kaasbøll ◽  
Stian Lydersen ◽  
Ingunn Ranøyen ◽  
Wendy Nilsen ◽  
Marit S Indredavik
2010 ◽  
Vol 22 (3) ◽  
pp. 621-634 ◽  
Author(s):  
Jelena Obradović ◽  
Alison Hipwell

AbstractThis study examined developmental processes linking competence and psychopathology in an urban sample of girls during their transition to adolescence. Longitudinal associations among indices of externalizing symptoms, social competence, and internalizing symptoms were also tested within contexts of family adversity and girls’ pubertal status. Child, parent, and teacher report were employed to assess core constructs across six annual assessment waves, starting at age 9. Results revealed the significant effect of prior levels of externalizing symptoms on changes in social competence and internalizing symptoms, as well as reciprocal relations between social competence and internalizing symptoms. In addition, girl's maladaptive functioning predicted increases in family adversity exposure over time. Last, more mature pubertal status in early assessment waves was linked to an increase in internalizing symptoms; however, this association was reversed by the last assessment, when most girls had reached advance stages of puberty. The timing of these effects reveals important targets for future interventions aimed at promoting the successful adaptation of girls in adolescence.


2013 ◽  
Author(s):  
Lurdes Verissimo ◽  
Marina Serra de Lemos ◽  
Joao Lopes

2007 ◽  
Author(s):  
Jeffrey I. Gold ◽  
Trina Haselrig ◽  
D. Colette Nicolaou ◽  
Katharine A. Belmont

Author(s):  
Sascha R. A. Alles ◽  
Anne-Marie Malfait ◽  
Richard J. Miller

Pain is not a simple phenomenon and, beyond its conscious perception, involves circuitry that allows the brain to provide an affective context for nociception, which can influence mood and memory. In the past decade, neurobiological techniques have been developed that allow investigators to elucidate the importance of particular groups of neurons in different aspects of the pain response, something that may have important translational implications for the development of novel therapies. Chemo- and optogenetics represent two of the most important technical advances of recent times for gaining understanding of physiological circuitry underlying complex behaviors. The use of these techniques for teasing out the role of neurons and glia in nociceptive pathways is a rapidly growing area of research. The major findings of studies focused on understanding circuitry involved in different aspects of nociception and pain are highlighted in this article. In addition, attention is drawn to the possibility of modification of chemo- and optogenetic techniques for use as potential therapies for treatment of chronic pain disorders in human patients.


2019 ◽  
Vol 712 ◽  
pp. 134483
Author(s):  
Morayo G. Adebiyi ◽  
Jeanne Manalo ◽  
Rodney E. Kellems ◽  
Yang Xia

2012 ◽  
Vol 2 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Gordon JG Asmundson ◽  
Holly A Parkerson ◽  
Mark Petter ◽  
Melanie Noel

2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 278-279
Author(s):  
M Defaye ◽  
N Abdullah ◽  
M Iftinca ◽  
C Altier

Abstract Background Long-lasting changes in neural pain circuits precipitate the transition from acute to chronic pain in patients living with inflammatory bowel diseases (IBDs). While significant improvement in IBD therapy has been made to reduce inflammation, a large subset of patients continues to suffer throughout quiescent phases of the disease, suggesting a high level of plasticity in nociceptive circuits during acute phases. The establishment of chronic visceral pain results from neuroplasticity in nociceptors first, then along the entire neural axis, wherein microglia, the resident immune cells of the central nervous system, are critically involved. Our lab has shown that spinal microglia were key in controlling chronic pain state in IBD. Using the Dextran Sodium Sulfate (DSS) model of colitis, we found that microglial G-CSF was able to sensitize colonic nociceptors that express the pain receptor TRPV1. While TRPV1+ nociceptors have been implicated in peripheral sensitization, their contribution to central sensitization via microglia remains unknown. Aims To investigate the role of TRPV1+ visceral afferents in microglial activation and chronic visceral pain. Methods We generated DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice in which TRPV1 sensory neurons can be inhibited (TRPV1-hM4Di) or activated (TRPV1-hM3Dq) in a time and tissue specific manner using the inert ligand Clozapine-N-Oxide (CNO). To test the inhibition of TRPV1 neurons in DSS-induced colitis, TRPV1-hM4Di mice were treated with DSS 2.5% or water for 7 days and received vehicle or CNO i.p. injection twice daily. To activate TRPV1 visceral afferents, TRPV1-hM3Dq mice received vehicle or CNO daily for 7 days, by oral gavage. After 7 days of treatment, visceral pain was evaluated by colorectal distension and spinal cords tissues were harvested to measure microglial activation. Results Our data validated the nociceptor specific expression and function of the DREADD in TRPV1-Cre mice. Inhibition of TRPV1 visceral afferents in DSS TRPV1-hM4Di mice was able to prevent the colitis-induced microglial activation and thus reduce visceral hypersensitivity. In contrast, activation of TRPV1 visceral afferents in TRPV1-hM3Dq mice was sufficient to drive microglial activation in the absence of colitis. Analysis of the proalgesic mediators derived from activated TRPV1-hM3Dq neurons identified ATP as a key factor of microglial activation. Conclusions Overall, these data provide novel insights into the mechanistic understanding of the gut/brain axis in chronic visceral pain and suggest a role of purinergic signaling that could be harnessed for testing effective therapeutic approaches to relieve pain in IBD patients. Funding Agencies CCCACHRI (Alberta Children’s Hospital Research Institute) and CSM (Cumming School of Medicine) postdoctoral fellowship


Sign in / Sign up

Export Citation Format

Share Document