scholarly journals A38 TRPV1 VISCERAL AFFERENTS CONTROL CENTRAL SENSITIZATION IN IBD

2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 278-279
Author(s):  
M Defaye ◽  
N Abdullah ◽  
M Iftinca ◽  
C Altier

Abstract Background Long-lasting changes in neural pain circuits precipitate the transition from acute to chronic pain in patients living with inflammatory bowel diseases (IBDs). While significant improvement in IBD therapy has been made to reduce inflammation, a large subset of patients continues to suffer throughout quiescent phases of the disease, suggesting a high level of plasticity in nociceptive circuits during acute phases. The establishment of chronic visceral pain results from neuroplasticity in nociceptors first, then along the entire neural axis, wherein microglia, the resident immune cells of the central nervous system, are critically involved. Our lab has shown that spinal microglia were key in controlling chronic pain state in IBD. Using the Dextran Sodium Sulfate (DSS) model of colitis, we found that microglial G-CSF was able to sensitize colonic nociceptors that express the pain receptor TRPV1. While TRPV1+ nociceptors have been implicated in peripheral sensitization, their contribution to central sensitization via microglia remains unknown. Aims To investigate the role of TRPV1+ visceral afferents in microglial activation and chronic visceral pain. Methods We generated DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice in which TRPV1 sensory neurons can be inhibited (TRPV1-hM4Di) or activated (TRPV1-hM3Dq) in a time and tissue specific manner using the inert ligand Clozapine-N-Oxide (CNO). To test the inhibition of TRPV1 neurons in DSS-induced colitis, TRPV1-hM4Di mice were treated with DSS 2.5% or water for 7 days and received vehicle or CNO i.p. injection twice daily. To activate TRPV1 visceral afferents, TRPV1-hM3Dq mice received vehicle or CNO daily for 7 days, by oral gavage. After 7 days of treatment, visceral pain was evaluated by colorectal distension and spinal cords tissues were harvested to measure microglial activation. Results Our data validated the nociceptor specific expression and function of the DREADD in TRPV1-Cre mice. Inhibition of TRPV1 visceral afferents in DSS TRPV1-hM4Di mice was able to prevent the colitis-induced microglial activation and thus reduce visceral hypersensitivity. In contrast, activation of TRPV1 visceral afferents in TRPV1-hM3Dq mice was sufficient to drive microglial activation in the absence of colitis. Analysis of the proalgesic mediators derived from activated TRPV1-hM3Dq neurons identified ATP as a key factor of microglial activation. Conclusions Overall, these data provide novel insights into the mechanistic understanding of the gut/brain axis in chronic visceral pain and suggest a role of purinergic signaling that could be harnessed for testing effective therapeutic approaches to relieve pain in IBD patients. Funding Agencies CCCACHRI (Alberta Children’s Hospital Research Institute) and CSM (Cumming School of Medicine) postdoctoral fellowship

1997 ◽  
Vol 20 (3) ◽  
pp. 435-437 ◽  
Author(s):  
Misha-Miroslav Backonja

Dysfunction or injury of pain-transmitting primary afferents' central pathways can result in pain. The organism as a whole responds to such injury and consequently many symptoms of neuropathic pain develop. The nervous system responds to painful events and injury with neuroplasticity. Both peripheral sensitization and central sensitization take place and are mediated by a number of biochemical factors, including genes and receptors. Correction of altered receptors activity is the logical way to intervene therapeutically. [berkley; blumberg et al.; coderre & katz; dickenson; mcmahon; wiesenfeld-hallinet al.]


2020 ◽  
Author(s):  
Li Jiang ◽  
Yixin Zhang ◽  
Feng Jing ◽  
Ting Long ◽  
Guangcheng Qin ◽  
...  

Abstract Background: Central sensitization is an important pathophysiological mechanism of chronic migraine (CM). According to our previous studies, microglial activation and subsequent inflammation in the trigeminal nucleus caudalis (TNC) contribute to the central sensitization. The P2X7 receptor (P2X7R) is a purinergic receptor expressed in microglia and participates in central sensitization in chronic pain, but its role in CM is unclear. Numerous studies have shown that P2X7R regulates the level of autophagy and that autophagy affects the microglial activation and inflammation. Recently, autophagy has been shown to be involved in neuropathic pain, but there is no information about autophagy in CM. Therefore, the current study investigated the role of P2X7R in CM and its underlying mechanism, focusing on autophagy regulation.Methods: The CM model was established by repeated intraperitoneal injection of nitroglycerin (NTG) in mice. A Von Frey filament and radiant heat were used to assess the mechanical and thermal hypersensitivity. Western blotting and immunofluorescence assays were performed to detect the expression of P2X7R, autophagy-related proteins, and the cellular localization of P2X7R. To determine the role of P2X7R and autophagy in CM, we detected the effects of the autophagy inducer, rapamycin (RAPA) and P2X7R antagonist, Brilliant Blue G (BBG), on pain behavior and the expression of calcitonin gene-related peptide (CGRP) and c-fos. In addition, the effect of RAPA and BBG on microglial activation and subsequent inflammation were investigated.Results: The expression of P2X7R was increased and was mainly colocalized with microglia in the TNC following recurrent NTG administration. The autophagic flux was blocked in CM, which was characterized by up-regulated LC3-II, and accumulated autophagy substrate protein, p62. RAPA significantly improved the basal rather than acute hyperalgesia. BBG alleviated both basal and acute hyperalgesia. BBG activated the level of autophagic flux. RAPA and BBG inhibited the activation of microglia, limited the inflammatory response, and reduced the expression of CGRP and c-fos. Conclusions: Our results demonstrate the dysfunction of the autophagic process in CM. Activated autophagy may have a preventive effect on migraine chronification. P2X7R contributes to central sensitization through mediating autophagy regulation and might become a potential target for CM.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Feng Jing ◽  
Qian Zou ◽  
Yangyang Wang ◽  
Zhiyou Cai ◽  
Yong Tang

Abstract Background Central sensitization is considered a critical pathogenic mechanism of chronic migraine (CM). Activation of microglia in the trigeminal nucleus caudalis (TNC) contributes to this progression. Microglial glucagon-like peptide-1 receptor (GLP-1R) activation can alleviate pain; however, whether it is involved in the mechanism of CM has not been determined. Thus, this study aims to investigate the precise role of GLP-1R in the central sensitization of CM. Methods Repeated nitroglycerin injection-treated mice were used as a CM animal model in the experiment. To identify the distribution and cell localization of GLP-1R in the TNC, we performed immunofluorescence staining. Changes in the expression of GLP-1R, Iba-1, PI3K and p-Akt in the TNC were examined by western blotting. To confirm the effect of GLP-1R and PI3K/Akt in CM, a GLP-1R selective agonist (liraglutide) and antagonist (exendin(9–39)) and a PI3K selective antagonist (LY294002) were administered. Mechanical hypersensitivity was measured through von Frey filaments. To investigate the role of GLP-1R in central sensitization, calcitonin gene-related peptide (CGRP) and c-fos were determined using western blotting and immunofluorescence. To determine the changes in microglial activation, IL-1β and TNF-α were examined by western blotting, and the number and morphology of microglia were measured by immunofluorescence. We also confirmed the effect of GLP-1R on microglial activation in lipopolysaccharide-treated BV-2 microglia. Results The protein expression of GLP-1R was increased in the TNC after nitroglycerin injection. GLP-1R was colocalized with microglia and astrocytes in the TNC and was fully expressed in BV-2 microglia. The GLP-1R agonist liraglutide alleviated basal allodynia and suppressed the upregulation of CGRP, c-fos and PI3K/p-Akt in the TNC. Similarly, the PI3K inhibitor LY294002 prevented nitroglycerin-induced hyperalgesia. In addition, activating GLP-1R reduced Iba-1, IL-1β and TNF-α release and inhibited TNC microglial number and morphological changes (process retraction) following nitroglycerin administration. In vitro, the protein levels of IL-1β and TNF-α in lipopolysaccharide-stimulated BV-2 microglia were also decreased by liraglutide. Conclusions These findings suggest that microglial GLP-1R activation in the TNC may suppress the central sensitization of CM by regulating TNC microglial activation via the PI3K/Akt pathway.


Neuroforum ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sigrid Elsenbruch ◽  
Sven Benson ◽  
Laura Ricarda Koenen ◽  
Franziska Labrenz ◽  
Adriane Icenhour

AbstractThe role of pain-related fear learning and memory processes, conceptually embedded within the fear-avoidance model of chronic pain, is increasingly recognized. The unique biological salience of interoceptive, visceral pain with its cognitive, emotional, and motivational facets fosters associative learning. Conditioned fear is in principle adaptive but may turn maladaptive and contribute to hypervigilance and hyperalgesia in chronic pain. This review summarizes current knowledge on the formation, extinction, and return of pain-related memories with a focus on visceral pain. It provides a conceptual background, describes experimental approaches, and summarizes findings on behavioral and neural mechanisms in healthy humans and patients with chronic pain. Future directions underscore the potential of refining knowledge on the role of associative learning in the pathophysiology and treatment of chronic visceral pain in disorders of gut–brain interactions such as irritable bowel syndrome.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Li Jiang ◽  
Yixin Zhang ◽  
Feng Jing ◽  
Ting Long ◽  
Guangcheng Qin ◽  
...  

Abstract Background Central sensitization is an important pathophysiological mechanism of chronic migraine (CM). According to our previous studies, microglial activation and subsequent inflammation in the trigeminal nucleus caudalis (TNC) contribute to the central sensitization. The P2X7 receptor (P2X7R) is a purinergic receptor expressed in microglia and participates in central sensitization in chronic pain, but its role in CM is unclear. Numerous studies have shown that P2X7R regulates the level of autophagy and that autophagy affects the microglial activation and inflammation. Recently, autophagy has been shown to be involved in neuropathic pain, but there is no information about autophagy in CM. Therefore, the current study investigated the role of P2X7R in CM and its underlying mechanism, focusing on autophagy regulation. Methods The CM model was established by repeated intraperitoneal injection of nitroglycerin (NTG) in mice. A Von Frey filament and radiant heat were used to assess the mechanical and thermal hypersensitivity. Western blotting and immunofluorescence assays were performed to detect the expression of P2X7R, autophagy-related proteins, and the cellular localization of P2X7R. To determine the role of P2X7R and autophagy in CM, we detected the effects of the autophagy inducer, rapamycin (RAPA) and P2X7R antagonist, Brilliant Blue G (BBG), on pain behavior and the expression of calcitonin gene-related peptide (CGRP) and c-fos. In addition, the effect of RAPA and BBG on microglial activation and subsequent inflammation were investigated. Results The expression of P2X7R was increased and was mainly colocalized with microglia in the TNC following recurrent NTG administration. The autophagic flux was blocked in CM, which was characterized by upregulated LC3-II, and accumulated autophagy substrate protein, p62. RAPA significantly improved the basal rather than acute hyperalgesia. BBG alleviated both basal and acute hyperalgesia. BBG activated the level of autophagic flux. RAPA and BBG inhibited the activation of microglia, limited the inflammatory response, and reduced the expression of CGRP and c-fos. Conclusions Our results demonstrate the dysfunction of the autophagic process in CM. Activated autophagy may have a preventive effect on migraine chronification. P2X7R contributes to central sensitization through mediating autophagy regulation and might become a potential target for CM.


2020 ◽  
Author(s):  
Li Jiang ◽  
Yixin Zhang ◽  
Feng Jing ◽  
Ting Long ◽  
Guangcheng Qin ◽  
...  

Abstract Background: Central sensitization is an important pathophysiological mechanism of chronic migraine (CM). According to our previous studies, microglial activation and subsequent inflammation in the trigeminal nucleus caudalis (TNC) contribute to the central sensitization. The P2X7 receptor (P2X7R) is a purinergic receptor expressed in microglia and participates in central sensitization in chronic pain, but its role in CM is unclear. Numerous studies have shown that P2X7R regulates the level of autophagy and that autophagy affects the microglial activation and inflammation. Recently, autophagy has been shown to be involved in neuropathic pain, but there is no information about autophagy in CM. Therefore, the current study investigated the role of P2X7R in CM and its underlying mechanism, focusing on autophagy regulation.Methods: The CM model was established by repeated intraperitoneal injection of nitroglycerin (NTG) in mice. A Von Frey filament and radiant heat were used to assess the mechanical and thermal hypersensitivity. Western blotting and immunofluorescence assays were performed to detect the expression of P2X7R, autophagy-related proteins, and the cellular localization of P2X7R. To determine the role of P2X7R and autophagy in CM, we detected the effects of the autophagy inducer, rapamycin (RAPA) and P2X7R antagonist, Brilliant Blue G (BBG), on pain behavior and the expression of calcitonin gene-related peptide (CGRP) and c-fos. In addition, the effect of RAPA and BBG on microglial activation and subsequent inflammation were investigated.Results: The expression of P2X7R was increased and was mainly colocalized with microglia in the TNC following recurrent NTG administration. The autophagic flux was blocked in CM, which was characterized by up-regulated LC3-II, and accumulated autophagy substrate protein, p62. RAPA significantly improved the basal rather than acute hyperalgesia. BBG alleviated both basal and acute hyperalgesia. BBG activated the level of autophagic flux. RAPA and BBG inhibited the activation of microglia, limited the inflammatory response, and reduced the expression of CGRP and c-fos. Conclusions: Our results demonstrate the dysfunction of the autophagic process in CM. Activated autophagy may have a preventive effect on migraine chronification. P2X7R contributes to central sensitization through mediating autophagy regulation and might become a potential target for CM.


2007 ◽  
Author(s):  
Jeffrey I. Gold ◽  
Trina Haselrig ◽  
D. Colette Nicolaou ◽  
Katharine A. Belmont

Sign in / Sign up

Export Citation Format

Share Document