scholarly journals Long-Term Wind Speed Forecasting using Spiking Neural Network Optimized by Improved Modified Grey Wolf Optimization Algorithm.

2016 ◽  
Vol 4 (7) ◽  
pp. 356-368 ◽  
Author(s):  
M. Madhiarasan ◽  
◽  
S.N. Deepa. ◽  
2021 ◽  
Vol 1821 (1) ◽  
pp. 012038
Author(s):  
Mohd. Asyraf Mansor ◽  
Mohd Shareduwan Mohd Kasihmuddin ◽  
Saratha Sathasivam

Author(s):  
C. Venkatesh Kumar ◽  
M. Ramesh Babu

The unit commitment (UC) is highly complex to solve the increasing integrations of wind farm due to intermittent wind power fluctuation in nature. This paper presents a hybrid methodology to solve the stochastic unit commitment (SUC) problem depending on binary mixed integer generator combination with renewable energy sources (RESs). In this combination, ON/OFF tasks of the generators are likewise included to satisfy the load requirement as for the system constraints. The proposed hybrid methodology is the consolidation of grey wolf optimization algorithm (GWOA) and artificial neural network (ANN), hence it is called the hybrid GWOANN (HGWOANN) technique. Here, the GWOA algorithm is used to optimizing the best combination of thermal generators depending on uncertain wind power, minimum operating cost and system constraints – that is, thermal generators limits, start-up cost, ramp-up time, ramp-down time, etc. ANN is utilized to capture the uncertain wind power events, therefore the system ensures maximal application of wind power. The combination of HGWOANN technique guarantees the prominent use of sustainable power sources to diminish the thermal generators unit operating cost. The proposed technique is implemented in MATLAB/Simulink site and the efficiency is assessed with different existing methods. The comparative analysis demonstrates that the proposed HGWOANN approach is proficient to solve unit commitment problems and wind integration. Here, the HGWOANN method is compared with existing techniques such as PSO, BPSO, IGSA to assess the overall performance using various metrics viz. RMSE, MAPE, MBE under 50 and 100 count of trials. In the proposed approach, the range of RMSE achieves 9.26%, MAPE achieves 0.95%, MBE achieves 1% in 50 count of trials. Moreover, in 100 count of trials, the range of RMSE achieves 7.38%, MAPE achieves 1.91%, MBE achieves 2.87%.


2021 ◽  
Author(s):  
A Nareshkumar ◽  
G Geetha

Abstract Recognizing signs and fonts of prehistoric language is a fairly difficult job that require special tools. This stipulation makes the dispensation period overriding, difficult, and tiresome to calculate. This paper presents a technique for recognizing ancient south Indian languages by applying Artificial Neural Network (ANN) associated with Opposition based Grey Wolf Optimization Algorithm (OGWA). It identifies the prehistoric language, signs and fonts. It is apparent from the ANN system that arbitrarily produced weights or neurons linking various layers plays a significant role in its performance. For adaptively determining these weights, this paper applies various optimization algorithms such as Opposition based Grey Wolf Optimization, Particle Swarm Optimization and Grey Wolf Optimization to the ANN system. Performance results have illustrated that the proposed ANN-OGWO technique achieves superior accuracy over the other techniques. In test case 1, the accuracy value of OGWO is 94.89% and in test case 2, the accuracy value of OGWO is 92.34%, on average, the accuracy of OGWO achieves 5.8% greater accuracy than ANN-GWO, 10.1% greater accuracy than ANN-PSO and 22.1% greater accuracy over conventional ANN technique.


2021 ◽  
Author(s):  
Zhaoshuang He ◽  
Yanhua Chen ◽  
Min Li

Abstract Wind energy, as renewable energy, has drawn the attention of society. The use of wind power generation can reduce the pollution to the environment and solve the problem of power shortage in offshore islands, grassland, pastoral areas, mountain areas, and highlands. Wind speed forecasting plays a significant role in wind farms. It can improve economic and social benefits and make an operation schedule for wind turbines in large wind farms. At present, researchers have proposed a variety of methods for wind speed forecasting; artificial neural network (ANN) is one of the most commonly used methods. This paper proposes a combined model based on the existing artificial neural network algorithms for wind speed forecasting at different heights. We first use the wavelet threshold method to the original wind speed data set for noise reduction. After that, the three artificial neural networks, extreme learning machine (ELM), Elman neural network, and Long Short-Term Memory neural network (LSTM), are applied for wind speed forecasting. In addition, variance reciprocal method and society cognitive optimization algorithm (SCO) are used to optimize the weight coefficients of the combined model. In order to evaluate the forecasting performance of the combined model, we select wind speed data at three heights (20m, 50m, and 80m) in National Wind Technology Center M2 Tower. The experimental results show that the forecasting performance of the combined model is better than the single model, and it has a good forecasting performance for the wind speed at different heights.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Rasel Sarkar ◽  
Sabariah Julai ◽  
Sazzad Hossain ◽  
Wen Tong Chong ◽  
Mahmudur Rahman

Since wind power is directly influenced by wind speed, long-term wind speed forecasting (WSF) plays an important role for wind farm installation. WSF is essential for controlling, energy management and scheduled wind power generation in wind farm. The proposed investigation in this paper provides 30-days-ahead WSF. Nonlinear Autoregressive (NAR) and Nonlinear Autoregressive Exogenous (NARX) Neural Network (NN) with different network settings have been used to facilitate the wind power generation. The essence of this study is that it compares the effect of activation functions (namely, tansig and logsig) in the performance of time series forecasting since activation function is the core element of any artificial neural network model. A set of wind speed data was collected from different meteorological stations in Malaysia, situated in Kuala Lumpur, Kuantan, and Melaka. The proposed activation functions tansig of NARNN and NARXNN resulted in promising outcomes in terms of very small error between actual and predicted wind speed as well as the comparison for the logsig transfer function results.


2021 ◽  
Author(s):  
Uday Chourasia ◽  
Sanjay Silakari

Abstract In recent years, cloud computing provides a spectacular platform for numerous users with persistent and alternative varying requirements. Here providing an appropriate service is considered a major challenge in the heterogeneous environment. In the cloud environment, security and service availability are the two most significant factors during the data encryption process. In order to provide optimal service availability, it is necessary to establish a load balancing technique that is capable of balancing the request from diverse nodes present in the cloud. This paper aims in establishing a dynamic load balancing technique using the APMG approach. Here in this paper, we integrated adaptive neuro-fuzzy interference system-polynomial neural network as well as memory-based grey wolf optimization algorithm for optimal load balancing. The memory-based grey wolf optimization algorithm is employed to enhance the precision of ANFIS-PNN and to maximize the locations of the membership functions respectively. In addition to this, two significant factors namely the turnaround time and CPU utilization involved in optimal load balancing scheme are evaluated. In addition to this, the performance evaluation of the proposed MG-ANFIS based dynamic load balancing approach is compared with various other load balancing approaches to determine the system performances.


Sign in / Sign up

Export Citation Format

Share Document