scholarly journals VEGETATION EFFECT UPON MACROINVERTEBRATE COMMUNITIES IN A VERTICAL-FLOW CONSTRUCTED WETLAND TREATING DOMESTIC WASTEWATER.

2018 ◽  
Vol 6 (7) ◽  
pp. 1027-1042
Author(s):  
FranckMichael Zahui ◽  
2013 ◽  
Vol 68 (7) ◽  
pp. 1461-1467 ◽  
Author(s):  
S. Prigent ◽  
J. Paing ◽  
Y. Andres ◽  
F. Chazarenc

Upgrades to enhance nitrogen removal were tested in a 2 year old pilot vertical flow constructed wetland in spring and summer periods. The effects of a saturated layer and of recirculation were tested in particular. Two pilots (L = 2 m, W = 1.25 m, H = 1.2 m), filled with expanded schist (Mayennite®), were designed with hydraulic saturated layers of 20 and 40 cm at the bottom. Each pilot was fed with raw domestic wastewater under field conditions according to a hydraulic load of 15–38 cm d−1 (i.e. 158–401 g COD (chemical oxygen demand) m−2 d−1) and to recirculation rates ranging from 0% up to 150%. The initial load during the first 2 years of operation resulted in an incomplete mineralized accumulated sludge leading to total suspended solids (TSS), COD and biochemical oxygen demand (BOD5) release. A 40 cm hydraulic saturated layer enabled an increase of 5–10% total nitrogen (TN) removal compared to a 20 cm saturated layer. Recirculation allowed the dilution of raw wastewater and enhanced nitrification in a single stage. A design of 1.8 m² pe−1 (48 cm d−1, 191 g COD m−2 d−1) with a 40 cm saturated layer and 100% recirculation enabled the French standard D4 (35 mg TSS L−1, 125 mg COD L−1, 25 mg BOD5 L−1), nitrogen concentrations below 20 mg TKN (total Kjeldahl nitrogen) L−1 and 50 mg TN L−1, to be met.


Desalination ◽  
2009 ◽  
Vol 246 (1-3) ◽  
pp. 617-624 ◽  
Author(s):  
M.Y. Sklarz ◽  
A. Gross ◽  
A. Yakirevich ◽  
M.I.M. Soares

2013 ◽  
Vol 68 (6) ◽  
pp. 1345-1351 ◽  
Author(s):  
Suwasa Kantawanichkul ◽  
Somsiri Sattayapanich ◽  
Frank van Dien

The aim of this study was to investigate the efficiency of wastewater treatment by vertical flow constructed wetland systems under different hydraulic loading rates (HLR). The comparison of two types of plants, Cyperus alternifolius (Umbrella sedge) and Vetiveria zizanioides (Vetiver grass), was also conducted. In this study, six circular concrete tanks (diameter 0.8 m) were filled with fine sand and gravel to the depth of 1.23 m. Three tanks were planted with Umbrella sedge and the other three tanks were planted with Vetiver grass. Settled domestic wastewater from Chiang Mai University (chemical oxygen demand (COD), NH4+-N and suspended solids (SS) of 127.1, 27.4 and 29.5 mg/L on average, respectively) was intermittently applied for 45 min and rested for 3 h 15 min. The HLR of each tank was controlled at 20, 29 and 40 cm/d. It was found that the removal efficiency of the Umbrella sedge systems was higher than the Vetiver grass systems for every parameter, and the lowest HLR provided the maximum treatment efficiency. The removal efficiency of COD and nitrogen in terms of total Kjeldahl nitrogen (TKN) was 76 and 65% at 20 cm/d HLR for Umbrella sedge compared to only 67 and 56% for Vetiver grass. Nitrogen accumulation in plant biomass was also higher in Umbrella sedge than in Vetiver grass in every HLR. Umbrella sedge was thus proved to be a suitable constructed wetland plant in tropical climates.


Sign in / Sign up

Export Citation Format

Share Document