scholarly journals Cooperation in the Mekong River Basin through Benefit Sharing

2015 ◽  
Vol 25 (1) ◽  
pp. 275-310
Author(s):  
이승호 ◽  
Seungkyung Lee
2020 ◽  
Author(s):  
You Lu ◽  
Iolanda Borzi ◽  
Liying Guo ◽  
Repush Patil ◽  
Yujie Zhang ◽  
...  

<p>The transboundary Lancang-Mekong River Basin has experienced both cooperation and conflict over the past several decades. Downstream countries (Thailand, Cambodia and Vietnam) rely on Mekong River for fisheries and agriculture, while upstream countries including China and Laos have been constructing dams to generate hydropower. The construction and operation of dams in upstream countries has changed the seasonality of streamflow in downstream countries, affecting their agriculture and fishery benefits. More recently, cooperation between upstream and downstream countries has led to benefit sharing and improved international relations throughout the river basin. In this presentation, we introduce a socio-hydrological model that simulates the hydrological changes in downstream countries resulting from upstream dam operation, based on collection of hydrological, economic and social data in Lancang-Mekong river basin. Our model captures the cooperation and conflict feedback loops which impacts the operation rules of upstream dams. In this way, our study generates understanding of the connections between water resources management and hydro-political dynamics underpinning cooperation and conflicts mechanism in this transboundary river basin.</p>


2017 ◽  
Vol 7 (1) ◽  
pp. 60 ◽  
Author(s):  
Pham Ngoc Bao ◽  
Bijon Kumer Mitra ◽  
Tetsuo Kuyama

This paper analyses roles of integrated approach to establish a regional mechanism for sustainable hydropower development in the Mekong River Basin. Based on a critical review of the current trend of hydropower development, it argued that existing approach of uncoordinated Mekong mainstream hydropower development cannot ensure sustainable development; rather it causes negative impacts on food security, livelihoods, biodiversity, and ecosystem across the river basin, especially countries in Lower Mekong Basin (LMB), including Cambodia, Thailand and Vietnam. As a result, it fails to bring positive net benefits at both national and regional level. Specifically, if all proposed mainstream dams are constructed and fully operated, Lao PDR is the only economically winner of billions USD after 20 years, while Thailand, Cambodia, and Viet Nam are losers, and total net value will be minus 275 billion USD. Early recognition of the “nexus” interactions amongst hydropower development and cross-border food security, water security and livelihoods can minimise the risk of diplomatic conflicts and social unrest, and is only enabled when member states are willing to divert high-level government priorities from national interests to transboundary interests, as implementing the nexus approach throughout the river basin could contribute to reducing trade-offs between hydropower development and basin-wide socio-economy, and increase synergies through implementation of benefit-sharing mechanisms towards a win-win outcome. It recommends strengthening the Mekong River Commission via bolstered resources and coordinating authority, and encourages China to participate as a full member. It also argues that transboundary Environmental Impact Assessments (EIA) of river projects should be conducted to reflect the synergic and trade-off nexus effect across the whole river basin.


2021 ◽  
Vol 765 ◽  
pp. 144494
Author(s):  
He Chen ◽  
Junguo Liu ◽  
Ganquan Mao ◽  
Zifeng Wang ◽  
Zhenzhong Zeng ◽  
...  

2021 ◽  
Vol 36 ◽  
pp. 100873
Author(s):  
Yishan Li ◽  
Hui Lu ◽  
Kun Yang ◽  
Wei Wang ◽  
Qiuhong Tang ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 303
Author(s):  
Shi Hu ◽  
Xingguo Mo

Using the Global Land Surface Satellite (GLASS) leaf area index (LAI), the actual evapotranspiration (ETa) and available water resources in the Mekong River Basin were estimated with the Remote Sensing-Based Vegetation Interface Processes Model (VIP-RS). The relative contributions of climate variables and vegetation greening to ETa were estimated with numerical experiments. The results show that the average ETa in the entire basin increased at a rate of 1.16 mm year−2 from 1980 to 2012 (36.7% of the area met the 95% significance level). Vegetation greening contributed 54.1% of the annual ETa trend, slightly higher than that of climate change. The contributions of air temperature, precipitation and the LAI were positive, whereas contributions of solar radiation and vapor pressure were negative. The effects of water supply and energy availability were equivalent on the variation of ETa throughout most of the basin, except the upper reach and downstream Mekong Delta. In the upper reach, climate warming played a critical role in the ETa variability, while the warming effect was offset by reduced solar radiation in the Mekong Delta (an energy-limited region). For the entire basin, the available water resources showed an increasing trend due to intensified precipitation; however, in downstream areas, additional pressure on available water resources is exerted due to cropland expansion with enhanced agricultural water consumption. The results provide scientific basis for practices of integrated catchment management and water resources allocation.


2021 ◽  
Vol 13 (2) ◽  
pp. 312
Author(s):  
Xiongpeng Tang ◽  
Jianyun Zhang ◽  
Guoqing Wang ◽  
Gebdang Biangbalbe Ruben ◽  
Zhenxin Bao ◽  
...  

The demand for accurate long-term precipitation data is increasing, especially in the Lancang-Mekong River Basin (LMRB), where ground-based data are mostly unavailable and inaccessible in a timely manner. Remote sensing and reanalysis quantitative precipitation products provide unprecedented observations to support water-related research, but these products are inevitably subject to errors. In this study, we propose a novel error correction framework that combines products from various institutions. The NASA Modern-Era Retrospective Analysis for Research and Applications (AgMERRA), the Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), the Climate Hazards group InfraRed Precipitation with Stations (CHIRPS), the Multi-Source Weighted-Ensemble Precipitation Version 1.0 (MSWEP), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Records (PERSIANN) were used. Ground-based precipitation data from 1998 to 2007 were used to select precipitation products for correction, and the remaining 1979–1997 and 2008–2014 observe data were used for validation. The resulting precipitation products MSWEP-QM derived from quantile mapping (QM) and MSWEP-LS derived from linear scaling (LS) are evaluated by statistical indicators and hydrological simulation across the LMRB. Results show that the MSWEP-QM and MSWEP-LS can better capture major annual precipitation centers, have excellent simulation results, and reduce the mean BIAS and mean absolute BIAS at most gauges across the LMRB. The two corrected products presented in this study constitute improved climatological precipitation data sources, both time and space, outperforming the five raw gridded precipitation products. Among the two corrected products, in terms of mean BIAS, MSWEP-LS was slightly better than MSWEP-QM at grid-scale, point scale, and regional scale, and it also had better simulation results at all stations except Strung Treng. During the validation period, the average absolute value BIAS of MSWEP-LS and MSWEP-QM decreased by 3.51% and 3.4%, respectively. Therefore, we recommend that MSWEP-LS be used for water-related scientific research in the LMRB.


Sign in / Sign up

Export Citation Format

Share Document