scholarly journals A New Approach for Coupling a Limited Area Model to a GCM for Regional Climate Simulations

1991 ◽  
Vol 69 (6) ◽  
pp. 723-728 ◽  
Author(s):  
Hideji Kida ◽  
Takashi Koide ◽  
Hidetaka Sasaki ◽  
Masaru Chiba
Water SA ◽  
2002 ◽  
Vol 28 (4) ◽  
Author(s):  
FA Engelbrecht ◽  
CJ DeW Rautenbach ◽  
JL McGregor ◽  
JJ Katzfey

2012 ◽  
Vol 140 (10) ◽  
pp. 3137-3148 ◽  
Author(s):  
Piet Termonia ◽  
Fabrice Voitus ◽  
Daan Degrauwe ◽  
Steven Caluwaerts ◽  
Rafiq Hamdi

Abstract This paper describes the implementation of a proposal of Boyd for the periodization and relaxation of the fields in a full three-dimensional spectral semi-implicit semi-Lagrangian limited-area model structure of an atmospheric modeling system called HARMONIE that is used for numerical weather prediction and regional climate studies. Some first feasibility tests in an operational numerical weather prediction context are presented. They show that, in terms of standard operational forecast scores, Boyd’s windowing-based method provides comparable performance as the old existing spline-based periodization procedure. However, the real improvements of this method should be expected in specific cases of strong dynamical forcings at the lateral boundaries. An extensive demonstration of the superiority of this windowing-based method is provided in an accompanying paper.


2020 ◽  
Author(s):  
Fedor Mesinger ◽  
Katarina Veljovic ◽  
Sin Chan Chou

<p>Almost universally, in Regional Climate Modeling (RCM) integrations, Davies’ relaxation lateral boundary conditions are applied. They force variables in a number of rows around the boundary to conform to the driver global model values, completely at the boundary, and less and less toward the inside of the integration domain. Very often, in addition, investigators apply so-called large scale or spectral nudging inside the domain, forcing the integration variables not to depart much from those of the driver model.</p><p>It is pointed out that there is no scientific basis for these two practices. So why are they used? In particular for the former of these two, it is suggested that reasons must be either a belief that this is a practice RCM should follow, or a technique to address numerical issues of the limited area model used, or a combination of the two.  For the latter, a belief only.</p><p>Examples are shown that, in the absence of these two stratagems, the limited area model can improve on large scales inside its domain. This demonstrates that their use, aimed to force variables inside the domain not to depart much from the driver model data, should be detrimental, if possible numerical issues of the model used were to be remedied.</p>


2020 ◽  
Vol 20 (2) ◽  
pp. 59-65
Author(s):  
Achmad Fahruddin Rais ◽  
Soenardi Soenardi ◽  
Zubaidi Fanani ◽  
Pebri Surgiansyah

IntisariPada penelitian ini, penulis mengkaji uji performa kualitatif konvergensi angin permukaan model reanalisis ERA5 di BMI yang dibandingkan dengan hasil penelitian menggunakan limited area model (LAM) oleh Qian, Im dan Eltahir serta Alfahmi et al. Konvergensi angin permukaan dan anomali angin permukaan dihitung dengan menggunakan finite difference.  Hasil penelitian menunjukkan bahwa model reanalisis ERA5 mampu mensimulasikan konvergensi anomali angin permukaan dengan baik terhadap model regional climate model (RegCM) maupun The MIT regional climate model (MRCM) resolusi 27 km di Pulau Jawa dan sekitarnya serta BMI bagian barat dengan nilai konvergensi yang lebih tinggi. Sedangkan terhadap model weather research forecast (WRF) 9 km di BMI bagian timur, model reanalisis ERA5 juga dapat mensimulasikan konvergensi angin permukaan, tetapi dengan nilai yang lebih rendah. Selain itu, model reanalisis ERA5 mensimulasikan konvergensi angin permukaan lebih cepat 2 jam di BMI bagian barat dan timur dibandingkan MRCM27 dan WRF. AbstractIn this study, we discuss the qualitative performance testing of ERA5 surface wind convergence over the Indonesia maritime continent (BMI) compared with research based on limited area model (LAM) by Qian, Im, and Eltahir and also Alfahmi et al. Wind surface convergence and wind surface anomalies convergence is calculated using finite-difference. The results show that the ERA5 reanalysis model can simulate convergence of surface wind anomalies compared with both regional climate model (RegCM) and 27 km MIT regional climate model (MRCM) over Java and also western BMI with higher convergence values. While ERA5 reanalysis model can also simulate convergence of surface winds, but with lower values compared to 9 km weather research forecast (WRF) model over eastern BMI. Besides, the ERA5 reanalysis model simulates convergence of surface winds, which is 2 hours faster over western and eastern BMI compared to MRCM27 and WRF.


Sign in / Sign up

Export Citation Format

Share Document