scholarly journals Dynamical System of the Mathematical Model for Tuberculosis with Vaccination

Author(s):  
Dian Grace Ludji ◽  
Paian Sianturi ◽  
Endar Nugrahani

This research focused on the modification of deterministic mathematical models for tuberculosis with vaccination. It also aimed to see the effect of giving the vaccine. It was done by adding vaccine compartments to people who were given the vaccine in the susceptible compartment. The population was divided into nine different groups. Those were susceptible individuals (S), vaccine (V), new latently infected (E1), diagnosed latently infected (E2), undiagnosed latently infected (E3), undiagnosed actively infected (l), diagnosed actively infected with prompt treatment (Dr), diagnosed actively infected with delay treatment (Dp), and treated (T). Basic reproduction number was constructed using next-generation matrix. Sensitivity analysis was also conducted. The results show that the model comprises two equilibriums: diseasefree equilibrium (T0) and endemic equilibrium (T*). It also shows that there is a relationship between R0 and two equilibriums. Moreover, the disease-free equilibrium point is asymptotically stable local when it is R0 < 1. Then, the disease-endemic equilibrium point is asymptotically stable local when it is R0 > 1. Furthermore, the parameters of β, ρ, and γ are the most important parameter.

2020 ◽  
Vol 24 (5) ◽  
pp. 917-922
Author(s):  
J. Andrawus ◽  
F.Y. Eguda ◽  
I.G. Usman ◽  
S.I. Maiwa ◽  
I.M. Dibal ◽  
...  

This paper presents a new mathematical model of a tuberculosis transmission dynamics incorporating first and second line treatment. We calculated a control reproduction number which plays a vital role in biomathematics. The model consists of two equilibrium points namely disease free equilibrium and endemic equilibrium point, it has been shown that the disease free equilibrium point was locally asymptotically stable if thecontrol reproduction number is less than one and also the endemic equilibrium point was locally asymptotically stable if the control reproduction number is greater than one. Numerical simulation was carried out which supported the analytical results. Keywords: Mathematical Model, Biomathematics, Reproduction Number, Disease Free Equilibrium, Endemic Equilibrium Point


2021 ◽  
Vol 25 (9) ◽  
pp. 1661-1670
Author(s):  
A.A. Danhausa ◽  
E.E. Daniel ◽  
C.J. Shawulu ◽  
A.M. Nuhu ◽  
L. Philemon

Regardless of many decades of research, the widespread availability of a vaccine and more recently highly visible WHO efforts to promote a unified global control strategy, Tuberculosis remains a leading cause of infectious mortality. In this paper, a Mathematical Model for Tuberculosis Epidemic with Passive Immunity and Drug-Sensitivity is presented. We carried out analytical studies of the model where the population comprises of eight compartments: passively immune infants, susceptible, latently infected with DS-TB. The Disease Free Equilibrium (DFE) and the Endemic Equilibrium (EE) points were established. The next generation matrix method was used to obtain the reproduction number for drug sensitive (𝑅𝑜𝑠) Tuberculosis. We obtained the disease-free equilibrium for drug sensitive TB which is locally asymptotically stable when 𝑅𝑜𝑠 < 1 indicating that tuberculosis eradication is possible within the population. We also obtained the global stability of the disease-free equilibrium and results showed that the disease-free equilibrium point is globally asymptotically stable when 𝑅𝑜𝑠 ≤ 1 which indicates that tuberculosis naturally dies out.


2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Joko Harianto

This article discusses modifications to the SEIL model that involve logistical growth. This model is used to describe the dynamics of the spread of tuberculosis disease in the population. The existence of the model's equilibrium points and its local stability depends on the basic reproduction number. If the basic reproduction number is less than unity, then there is one equilibrium point that is locally asymptotically stable. The equilibrium point is a disease-free equilibrium point. If the basic reproduction number ranges from one to three, then there are two equilibrium points. The two equilibrium points are disease-free equilibrium and endemic equilibrium points. Furthermore, for this case, the endemic equilibrium point is locally asymptotically stable.


CAUCHY ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 102
Author(s):  
Joko Harianto ◽  
Titik Suparwati

In this article, we present an SVIR epidemic model with deadly deseases and non constant population. We only discuss the local stability analysis of the model. Initially the basic formulation of the model is presented. Two equilibrium point exists for the system; disease free and endemic equilibrium point. The local stability of the disease free and endemic equilibrium exists when the basic reproduction number less or greater than unity, respectively. If the value of R0 less than one then the desease free equilibrium point is locally asymptotically stable, and if its exceeds, the endemic equilibrium point is locally asymptotically stable. The numerical results are presented for illustration.


2017 ◽  
Vol 10 (07) ◽  
pp. 1750096 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Taj Wali Khan ◽  
Saeed Islam

In this paper, a dynamical system of a SEIQV mathematical model with nonlinear generalized incidence arising in biology is investigated. The stability of the disease-free and endemic equilibrium is discussed. The basic reproduction number of the model is obtained. We found that the disease-free and endemic equilibrium is stable locally as well as globally asymptotically stable. For [Formula: see text], the disease-free equilibrium is stable both locally and globally and for [Formula: see text], the endemic equilibrium is stable globally asymptotically. Finally, some numerical results are presented.


2020 ◽  
Vol 24 (6) ◽  
pp. 975-978
Author(s):  
A.O. Sangotola ◽  
O. Oyewole

In this research work, we extend the classical SEIR model to accommodate the effect of zero, incomplete and complete treatment on the dynamics of the model. The basic reproduction number (Ro) of the model dynamics is obtained by using the next generation matrix approach. The disease free equilibrium point of the model is found to be locally asymptotically stable if Ro < 1. A suitable Lyapunov function is constructed to determine the global stability of the disease free equilibrium point. Numerical simulation is carried out to determine the effect on the compliance to the treatment  prescription. Keywords: Equilibrium, Lyapunov function, Global stability, Simulation  


Author(s):  
Oluwafemi Temidayo J. ◽  
Azuaba E. ◽  
Lasisi N. O.

In this study, we analyzed the endemic equilibrium point of a malaria-hygiene mathematical model. We prove that the mathematical model is biological and meaningfully well-posed. We also compute the basic reproduction number using the next generation method. Stability analysis of the endemic equilibrium point show that the point is locally stable if reproduction number is greater that unity and globally stable by the Lasalle’s invariant principle. Numerical simulation to show the dynamics of the compartment at various hygiene rate was carried out.


Author(s):  
Abdul Faliq Anwar ◽  
Windarto Windarto ◽  
Cicik Alfiniyah

Co-infection of influenza A virus and pneumococcus is caused by influenza A virus and pneumococcus bacteria which infected host cell at the same time. The purpose of this thesis is to analyze stability of equilibrium point on mathematical model within-host co-infection of influenza A and pneumococcus. Based on anlytical result of the model there are four quilibrium points, non endemic co-infection equilibrium (E0), endemic influenza A virus equilibrium (E1), endemic pneumococcus equilbrium (E2) and endemic co-infection equilibrium (E3). By Next Generation Matrix (NGM), we obtain two basic reproduction number, which are basic reproduction number for influenza A virus (R0v) and basic reproduction number for pneumococcus (R0b). Existence of equilibrium point and local stability of equilibrium point dependent on basic reproduction number. Non endemic co-infection equilibrium is locally asymtotically stable if R0v < 1 and R0b < 1; influenza A virus endemic equilibrium is locally asymtotically stable if R0v > 1 and R0b > 1; pneumococcus endemic equilibrium is locally asymtotically stable if R0v < 1 and R0b > 1. Meanwhile, the co-infection endemic equilibrium is locally asymtotically stable if R0v > 1 and R0b > 1. From the numerical simulation result, it was shown that increasing the number of influenza A virus and pneumococcus made the number of population cell infected by influenza A virus and pneumococcus (co-infection) also increased.


2020 ◽  
Vol 10 (22) ◽  
pp. 8296 ◽  
Author(s):  
Malen Etxeberria-Etxaniz ◽  
Santiago Alonso-Quesada ◽  
Manuel De la Sen

This paper investigates a susceptible-exposed-infectious-recovered (SEIR) epidemic model with demography under two vaccination effort strategies. Firstly, the model is investigated under vaccination of newborns, which is fact in a direct action on the recruitment level of the model. Secondly, it is investigated under a periodic impulsive vaccination on the susceptible in the sense that the vaccination impulses are concentrated in practice in very short time intervals around a set of impulsive time instants subject to constant inter-vaccination periods. Both strategies can be adapted, if desired, to the time-varying levels of susceptible in the sense that the control efforts be increased as those susceptible levels increase. The model is discussed in terms of suitable properties like the positivity of the solutions, the existence and allocation of equilibrium points, and stability concerns related to the values of the basic reproduction number. It is proven that the basic reproduction number lies below unity, so that the disease-free equilibrium point is asymptotically stable for larger values of the disease transmission rates under vaccination controls compared to the case of absence of vaccination. It is also proven that the endemic equilibrium point is not reachable if the disease-free one is stable and that the disease-free equilibrium point is unstable if the reproduction number exceeds unity while the endemic equilibrium point is stable. Several numerical results are investigated for both vaccination rules with the option of adapting through ime the corresponding efforts to the levels of susceptibility. Such simulation examples are performed under parameterizations related to the current SARS-COVID 19 pandemic.


2004 ◽  
Vol 12 (04) ◽  
pp. 399-417 ◽  
Author(s):  
M. KGOSIMORE ◽  
E. M. LUNGU

This study investigates the effects of vaccination and treatment on the spread of HIV/AIDS. The objectives are (i) to derive conditions for the success of vaccination and treatment programs and (ii) to derive threshold conditions for the existence and stability of equilibria in terms of the effective reproduction number R. It is found, firstly, that the success of a vaccination and treatment program is achieved when R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α), where R0t and R0v are respectively the reproduction numbers for populations consisting entirely of treated and vaccinated individuals, R0 is the basic reproduction number in the absence of any intervention, RUT(α) and RVT(σ) are respectively the reproduction numbers in the presence of a treatment (α) and a combination of vaccination and treatment (σ) strategies. Secondly, that if R<1, there exists a unique disease free equilibrium point which is locally asymptotically stable, while if R>1 there exists a unique locally asymptotically stable endemic equilibrium point, and that the two equilibrium points coalesce at R=1. Lastly, it is concluded heuristically that the stable disease free equilibrium point exists when the conditions R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α) are satisfied.


Sign in / Sign up

Export Citation Format

Share Document