scholarly journals A Mathematical Model of a Tuberculosis Transmission Dynamics Incorporating First and Second Line Treatment

2020 ◽  
Vol 24 (5) ◽  
pp. 917-922
Author(s):  
J. Andrawus ◽  
F.Y. Eguda ◽  
I.G. Usman ◽  
S.I. Maiwa ◽  
I.M. Dibal ◽  
...  

This paper presents a new mathematical model of a tuberculosis transmission dynamics incorporating first and second line treatment. We calculated a control reproduction number which plays a vital role in biomathematics. The model consists of two equilibrium points namely disease free equilibrium and endemic equilibrium point, it has been shown that the disease free equilibrium point was locally asymptotically stable if thecontrol reproduction number is less than one and also the endemic equilibrium point was locally asymptotically stable if the control reproduction number is greater than one. Numerical simulation was carried out which supported the analytical results. Keywords: Mathematical Model, Biomathematics, Reproduction Number, Disease Free Equilibrium, Endemic Equilibrium Point

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Pakwan Riyapan ◽  
Sherif Eneye Shuaib ◽  
Arthit Intarasit

In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19 pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible S , exposed E , symptomatically infected I s , asymptomatically infected I a , quarantined Q , recovered R , and death D , respectively. The next-generation matrix approach was used to compute the basic reproduction number denoted as R cvd 19 of the proposed model. The results show that the disease-free equilibrium is globally asymptotically stable if R cvd 19 < 1 . On the other hand, the global asymptotic stability of the endemic equilibrium occurs if R cvd 19 > 1 . The mathematical analysis of the model is supported using numerical simulations. Moreover, the model’s analysis and numerical results prove that the consistent use of face masks would go on a long way in reducing the COVID-19 pandemic.


2020 ◽  
Vol 13 (07) ◽  
pp. 2050062
Author(s):  
Yibeltal Adane Terefe ◽  
Semu Mitiku Kassa

A deterministic model for the transmission dynamics of melioidosis disease in human population is designed and analyzed. The model is shown to exhibit the phenomenon of backward bifurcation, where a stable disease-free equilibrium co-exists with a stable endemic equilibrium when the basic reproduction number [Formula: see text] is less than one. It is further shown that the backward bifurcation dynamics is caused by the reinfection of individuals who recovered from the disease and relapse. The existence of backward bifurcation implies that bringing down [Formula: see text] to less than unity is not enough for disease eradication. In the absence of backward bifurcation, the global asymptotic stability of the disease-free equilibrium is shown whenever [Formula: see text]. For [Formula: see text], the existence of at least one locally asymptotically stable endemic equilibrium is shown. Sensitivity analysis of the model, using the parameters relevant to the transmission dynamics of the melioidosis disease, is discussed. Numerical experiments are presented to support the theoretical analysis of the model. In the numerical experimentations, it has been observed that screening and treating individuals in the exposed class has a significant impact on the disease dynamics.


2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Joko Harianto

This article discusses modifications to the SEIL model that involve logistical growth. This model is used to describe the dynamics of the spread of tuberculosis disease in the population. The existence of the model's equilibrium points and its local stability depends on the basic reproduction number. If the basic reproduction number is less than unity, then there is one equilibrium point that is locally asymptotically stable. The equilibrium point is a disease-free equilibrium point. If the basic reproduction number ranges from one to three, then there are two equilibrium points. The two equilibrium points are disease-free equilibrium and endemic equilibrium points. Furthermore, for this case, the endemic equilibrium point is locally asymptotically stable.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Ebrima Kanyi ◽  
Ayodeji Sunday Afolabi ◽  
Nelson Owuor Onyango

This paper presents a mathematical model that describes the transmission dynamics of schistosomiasis for humans, snails, and the free living miracidia and cercariae. The model incorporates the treated compartment and a preventive factor due to water sanitation and hygiene (WASH) for the human subpopulation. A qualitative analysis was performed to examine the invariant regions, positivity of solutions, and disease equilibrium points together with their stabilities. The basic reproduction number, R 0 , is computed and used as a threshold value to determine the existence and stability of the equilibrium points. It is established that, under a specific condition, the disease-free equilibrium exists and there is a unique endemic equilibrium when R 0 > 1 . It is shown that the disease-free equilibrium point is both locally and globally asymptotically stable provided R 0 < 1 , and the unique endemic equilibrium point is locally asymptotically stable whenever R 0 > 1 using the concept of the Center Manifold Theory. A numerical simulation carried out showed that at R 0 = 1 , the model exhibits a forward bifurcation which, thus, validates the analytic results. Numerical analyses of the control strategies were performed and discussed. Further, a sensitivity analysis of R 0 was carried out to determine the contribution of the main parameters towards the die out of the disease. Finally, the effects that these parameters have on the infected humans were numerically examined, and the results indicated that combined application of treatment and WASH will be effective in eradicating schistosomiasis.


Author(s):  
Dian Grace Ludji ◽  
Paian Sianturi ◽  
Endar Nugrahani

This research focused on the modification of deterministic mathematical models for tuberculosis with vaccination. It also aimed to see the effect of giving the vaccine. It was done by adding vaccine compartments to people who were given the vaccine in the susceptible compartment. The population was divided into nine different groups. Those were susceptible individuals (S), vaccine (V), new latently infected (E1), diagnosed latently infected (E2), undiagnosed latently infected (E3), undiagnosed actively infected (l), diagnosed actively infected with prompt treatment (Dr), diagnosed actively infected with delay treatment (Dp), and treated (T). Basic reproduction number was constructed using next-generation matrix. Sensitivity analysis was also conducted. The results show that the model comprises two equilibriums: diseasefree equilibrium (T0) and endemic equilibrium (T*). It also shows that there is a relationship between R0 and two equilibriums. Moreover, the disease-free equilibrium point is asymptotically stable local when it is R0 < 1. Then, the disease-endemic equilibrium point is asymptotically stable local when it is R0 > 1. Furthermore, the parameters of β, ρ, and γ are the most important parameter.


2020 ◽  
Vol 17 (2) ◽  
pp. 280-292
Author(s):  
Ario Wiraya

Severe Acute Respiratory Syndrome (SARS) Coronavirus infection in a human body indicated by cytokine response due to an inflammation. The purpose of this research is to construct and analyze a mathematical model of interaction between inflammatory pro-response and anti-response cytokine to predict the dynamic on inflammatory response system, so that the treatment can be optimized. The results obtained in this research describe some dynamics which happen on the cytokines, i.e. the disease-free equilibrium point is asymptotically stable when the basic reproduction number is less than one. In this condition, a patient with initial concentrations of the cytokines around the disease-free equilibrium point will be free of viral infection. The infection equilibrium point is asymptotically stable when the basic reproduction number is greater than one. In this condition, a patient with initial concentrations of the cytokines around the infection equilibrium point will be infected by the virus. Probability of a patient being free of viral infection can increase if the production rate of the cytokines are decreased or the degradation rate of the cytokines are increased.


CAUCHY ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 102
Author(s):  
Joko Harianto ◽  
Titik Suparwati

In this article, we present an SVIR epidemic model with deadly deseases and non constant population. We only discuss the local stability analysis of the model. Initially the basic formulation of the model is presented. Two equilibrium point exists for the system; disease free and endemic equilibrium point. The local stability of the disease free and endemic equilibrium exists when the basic reproduction number less or greater than unity, respectively. If the value of R0 less than one then the desease free equilibrium point is locally asymptotically stable, and if its exceeds, the endemic equilibrium point is locally asymptotically stable. The numerical results are presented for illustration.


2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Yakui Xue ◽  
Xiaohong Wang

Because the latent period and the infectious period of tuberculosis (TB) are very long, it is not reasonable to consider the time as constant. So this paper formulates a mathematical model that divides the latent period and the infectious period into n-stages. For a general n-stage stage progression (SP) model with bilinear incidence, we analyze its dynamic behavior. First, we give the basic reproduction numberR0. Moreover, ifR0≤1, the disease-free equilibriumP0is globally asymptotically stable and the disease always dies out. IfR0>1, the unique endemic equilibriumP∗is globally asymptotically stable and the disease persists at the endemic equilibrium.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Achamyelesh Amare Aligaz ◽  
Justin Manango W. Munganga

In this paper we present a mathematical model for the transmission dynamics of Contagious Bovine Pleuropneumonia (CBPP) by considering antibiotic treatment and vaccination. The model is comprised of susceptible, vaccinated, exposed, infectious, persistently infected, and recovered compartments. We analyse the model by deriving a formula for the control reproduction number Rc and prove that, for Rc<1, the disease free equilibrium is globally asymptotically stable; thus CBPP dies out, whereas for Rc>1, the unique endemic equilibrium is globally asymptotically stable and hence the disease persists. Thus, Rc=1 acts as a sharp threshold between the disease dying out or causing an epidemic. As a result, the threshold of antibiotic treatment is αt⁎=0.1049. Thus, without using vaccination, more than 85.45% of the infectious cattle should receive antibiotic treatment or the period of infection should be reduced to less than 8.15 days to control the disease. Similarly, the threshold of vaccination is ρ⁎=0.0084. Therefore, we have to vaccinate at least 80% of susceptible cattle in less than 49.5 days, to control the disease. Using both vaccination and antibiotic treatment, the threshold value of vaccination depends on the rate of antibiotic treatment, αt, and is denoted by ραt. Hence, if 50% of infectious cattle receive antibiotic treatment, then at least 50% of susceptible cattle should get vaccination in less than 73.8 days in order to control the disease.


Author(s):  
Getachew Beyecha Batu ◽  
Eshetu Dadi Gurmu

In this paper, we have developed a deterministic mathematical model that discribe the transmission dynamics of novel corona virus with prevention control. The disease free and endemic equilibrium point of the model were calculated and its stability analysis were prformed. The reproduction number R0 of the model which determine the persistence of the disease or not was calculated by using next generation matrix and also used to determine the stability of the disease free and endemic equilibrium points which exists conditionally. Furthermore, sensitivity analysis of the model was performed on the parameters in the equation of reproduction to determine their relative significance on the transmission dynamics of COVID- 19 pandemic disease. Finally the simulations were carried out using MATLAB R2015b with ode45 solver. The simulation results illustrated that applying prevention control can successfully reduces the transmission dynamic of COVID-19 infectious disease.


Sign in / Sign up

Export Citation Format

Share Document