scholarly journals Nonlinear Split-Plot Design Model in Parameters Estimation using Estimated Generalized Least Square - Maximum Likelihood Estimation

Author(s):  
Ikwuoche John David ◽  
Osebekwin Ebenenzer Asiribo ◽  
Hussain Garba Dikko

This research aimed to provide a theoretical framework for intrinsically nonlinear models with two additive error terms. To achieve this, an iterative Gauss-Newton via Taylor Series expansion procedures for Estimated Generalized Least Square (EGLS) technique was adopted. This technique was applied in estimating the parameters of an intrinsically nonlinear split-plot design model where the variance components were unknown. The unknown variance components were estimated via Maximum Likelihood Estimation (MLE) method. To achieve the numerical stability in the iterative process of estimating the parameters, Householder QR decomposition was used. The results show that EGLS method presented in this research is available and applicable to estimate linear fixed, random, and mixed-effect models. However, in practical situations, the functional form of the mean in the model is often nonlinear due to the dynamics involved in the system process.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yifan Sun ◽  
Xiang Xu

As a widely used inertial device, a MEMS triaxial accelerometer has zero-bias error, nonorthogonal error, and scale-factor error due to technical defects. Raw readings without calibration might seriously affect the accuracy of inertial navigation system. Therefore, it is necessary to conduct calibration processing before using a MEMS triaxial accelerometer. This paper presents a MEMS triaxial accelerometer calibration method based on the maximum likelihood estimation method. The error of the MEMS triaxial accelerometer comes into question, and the optimal estimation function is established. The calibration parameters are obtained by the Newton iteration method, which is more efficient and accurate. Compared with the least square method, which estimates the parameters of the suboptimal estimation function established under the condition of assuming that the mean of the random noise is zero, the parameters calibrated by the maximum likelihood estimation method are more accurate and stable. Moreover, the proposed method has low computation, which is more functional. Simulation and experimental results using the consumer low-cost MEMS triaxial accelerometer are presented to support the abovementioned superiorities of the maximum likelihood estimation method. The proposed method has the potential to be applied to other triaxial inertial sensors.


Author(s):  
Yuli Liang ◽  
Dietrich von Rosen ◽  
Tatjana von Rosen

In this article we consider a multilevel model with block circular symmetric covariance structure. Maximum likelihood estimation of the parameters of this model is discussed. We show that explicit maximum likelihood estimators of variance components exist under certain restrictions on the parameter space.


Sign in / Sign up

Export Citation Format

Share Document