scholarly journals Full state-feedback solution for a flywheel based satellite energy and attitude control scheme

2017 ◽  
Vol 19 (5) ◽  
pp. 3522-3532 ◽  
Author(s):  
Ibrahim Mustafa Mehedi
Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2062 ◽  
Author(s):  
Thuy Tran ◽  
Seung-Jin Yoon ◽  
Kyeong-Hwa Kim

In order to alleviate the negative impacts of harmonically distorted grid conditions on inverters, this paper presents a linear quadratic regulator (LQR)-based current control design for an inductive-capacitive-inductive (LCL)-filtered grid-connected inverter. The proposed control scheme is constructed based on the internal model (IM) principle in which a full-state feedback controller is used for the purpose of stabilization and the integral terms as well as resonant terms are augmented into a control structure for the reference tracking and harmonic compensation, respectively. Additionally, the proposed scheme is implemented in the synchronous reference frame (SRF) to take advantage of the simultaneous compensation for both the negative and positive sequence harmonics by one resonant term. Since this leads to the decrease of necessary resonant terms by half, the computation effort of the controller can be reduced. With regard to the full-state feedback control approach for the LCL-filtered grid connected inverter, additional sensing devices are normally required to measure all of the system state variables. However, this causes a complexity in hardware and high implementation cost for measurement devices. To overcome this challenge, this paper presents a discrete-time current full-state observer that uses only the information from the control input, grid-side current sensor, and grid voltage sensor to estimate all of the system state variables with a high precision. Finally, an optimal linear quadratic control approach is introduced for the purpose of choosing optimal feedback gains, systematically, for both the controller and full-state observer. The simulation and experimental results are presented to prove the effectiveness and validity of the proposed control scheme.


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Emmanouil Spyrakos-Papastavridis ◽  
Jian S. Dai

Abstract This paper attempts to address the quandary of flexible-joint humanoid balancing performance augmentation, via the introduction of the Full-State Feedback Variable Impedance Control (FSFVIC), and Model-Free Compliant Floating-base VIC (MCFVIC) schemes. In comparison to rigid-joint humanoid robots, efficient balancing control of compliant bipeds, powered by Series Elastic Actuators (or harmonic drives), requires the design of more sophisticated controllers encapsulating both the motor and underactuated link dynamics. It has been demonstrated that Variable Impedance Control (VIC) can improve robotic interaction performance, albeit by introducing energy-injecting elements that may jeopardize closed-loop stability. To this end, the novel FSFVIC and MCFVIC schemes are proposed, which amalgamate both collocated and non-collocated feedback gains, with power-shaping signals that are capable of preserving the system's stability/passivity during VIC. The FSFVIC and MCFVIC stably modulate the system's collocated state gains to augment balancing performance, in addition to the non-collocated state gains that dictate the position control accuracy. Utilization of arbitrarily low-impedance gains is permitted by both the FSFVIC and MCFVIC schemes propounded herein. An array of experiments involving the COmpliant huMANoid reveals that significant balancing performance amelioration is achievable through online modulation of the full-state feedback gains (VIC), as compared to utilization of invariant impedance control.


2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


Author(s):  
Marcio S. de Queiroz ◽  
Darren M. Dawson ◽  
Siddharth P. Nagarkatti ◽  
Fumin Zhang

Sign in / Sign up

Export Citation Format

Share Document