series elastic actuators
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 57)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Brian Arthur Bittner ◽  
Ross L Hatton ◽  
Shai Revzen

Abstract Systems whose movement is highly dissipative provide an opportunity to both identify models easily and quickly optimize motions. Geometric mechanics provides means for reduction of the dynamics by environmental homogeneity, while the dissipative nature minimizes the role of second order (inertial) features in the dynamics. Here we extend the tools of geometric system identification to ``Shape-Underactuated Dissipative Systems (SUDS)'' -- systems whose motions are more dissipative than inertial, but whose actuation is restricted to a subset of the body shape coordinates. Many animal motions are SUDS, including micro-swimmers such as nematodes and flagellated bacteria, and granular locomotors such as snakes and lizards. Many soft robots are also SUDS, particularly those robots using highly damped series elastic actuators. Whether involved in locomotion or manipulation, these robots are often used to interface less rigidly with the environment. We motivate the use of SUDS models, and validate their ability to predict motion of a variety of simulated viscous swimming platforms. For a large class of SUDS, we show how the shape velocity actuation inputs can be directly converted into torque inputs suggesting that systems with soft pneumatic actuators or dielectric elastomers can be modeled with the tools presented. Based on fundamental assumptions in the physics, we show how our model complexity scales linearly with the number of passive shape coordinates. This offers a large reduction on the number of trials needed to identify the system model from experimental data, and may reduce overfitting. The sample efficiency of our method suggests its use in modeling, control, and optimization in robotics, and as a tool for the study of organismal motion in friction dominated regimes.


Mechatronics ◽  
2021 ◽  
Vol 79 ◽  
pp. 102635
Author(s):  
Edgar A. Bolívar-Nieto ◽  
Tyler Summers ◽  
Robert D. Gregg ◽  
Siavash Rezazadeh

2021 ◽  
Author(s):  
Jie Cheng ◽  
Shengpei Ding ◽  
Hongjun Yang ◽  
Xuexin Zhang ◽  
Tairen Sun

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2895
Author(s):  
Hubert Gattringer ◽  
Andreas Müller ◽  
Philip Hoermandinger

Robotic manipulators physically interacting with their environment must be able to measure contact forces/torques. The standard approach to this end is attaching force/torque sensors directly at the end-effector (EE). This provides accurate measurements, but at a significant cost. Indirect measurement of the EE-loads by means of torque sensors at the actuated joint of a robot is an alternative, in particular for series-elastic actuators, but requires dedicated robot designs and significantly increases costs. In this paper, two alternative sensor concept for indirect measurement of EE-loads are presented. Both sensors are located at the robot base. The first sensor design involves three load cells on which the robot is mounted. The second concept consists of a steel plate with four spokes, at which it is suspended. At each spoke, strain gauges are attached to measure the local deformation, which is related to the load at the sensor plate (resembling the main principle of a force/torque sensor). Inferring the EE-load from the so determined base wrench necessitates a dynamic model of the robot, which accounts for the static as well as dynamic loads. A prototype implementation of both concepts is reported. Special attention is given to the model-based calibration, which is crucial for these indirect measurement concepts. Experimental results are shown when the novel sensors are employed for a tool changing task, which to some extend resembles the well-known peg-in-the-hole problem.


Sign in / Sign up

Export Citation Format

Share Document