scholarly journals Nonlinear dynamic analysis on maglev train system with flexible guideway and double time-delay feedback control

2017 ◽  
Vol 19 (8) ◽  
pp. 6346-6362 ◽  
Author(s):  
Dinggang Gao ◽  
Junqi Xu ◽  
Chen Chen ◽  
Shihui Luo ◽  
Qingquan Qian
Author(s):  
Kaiwei Wu ◽  
Chuanbo Ren ◽  
Junshuai Cao ◽  
Zhichuan Sun

Suspension system is one of the important parts of a vehicle, which is used to buffer the impact of uneven road to the body and passengers, so the suspension system has an important impact on the safety and ride comfort of the vehicle. In order to improve the safety and comfort of passengers and vehicles, in this paper a five-degree-of-freedom half car model is established, and the uncertainty of the model and the time-delay of the control are considered. The dynamic response of vehicle body acceleration root mean square, passenger acceleration root mean square, displacement root mean square and vehicle body pitch acceleration root mean square are selected as optimization objectives. The time-delay control parameters are determined by chaos particle swarm optimization algorithm. The time-delay stability of the suspension control system is analyzed by frequency-domain scanning method to ensure the stability of the time-delay control system. Finally, by establishing the simulation model of the active suspension system with double time-delay feedback control, the response characteristics of the suspension system with double time-delay active feedback control to simple harmonic excitation and random excitation input are analyzed. The results show that under the premise of ensuring the system stability, the active suspension system with double time-delay feedback control has good and obvious controlling and damping effect on the body and seats.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Kaiwei Wu ◽  
Chuanbo Ren

With the application of an active control unit in the suspension system, the phenomenon of time delay has become an important factor in the control system. Aiming at the application of time-delay feedback control in vehicle active suspension systems, this paper has researched the dynamic behavior of semivehicle four-degree-of-freedom structure including an active suspension with double time-delay feedback control, focusing on analyzing the vibration response and stability of the main vibration system of the structure. The optimal objective function is established according to the amplitude-frequency characteristics of the system, and the optimal time-delay control parameters are obtained by using the particle swarm optimization algorithm. The stability for active suspension with double time-delay feedback control by frequency-domain scanning method is analyzed, and the simulation model of active suspension with double time delay based on feedback control is finally established. The simulation results show that the active suspension with double time-delay feedback control could reduce the body’s vertical vibration acceleration, pitch acceleration, and other indicators significantly, whether under harmonic excitation or random excitation. So, it is indicating that the active suspension with double time-delay feedback control has a better control effect in improving the ride comfort of the car, and it has important reference value for further research on suspension performance optimization.


2018 ◽  
Vol 156 ◽  
pp. 351-362 ◽  
Author(s):  
Yi Hui ◽  
Hou Jun Kang ◽  
Siu Seong Law ◽  
Zheng Qing Chen

Sign in / Sign up

Export Citation Format

Share Document