scholarly journals Fluoride Release and Recharging Ability of Glass Ionomer Cement Incorporating Hydroxyapatite Nanoparticles

2021 ◽  
Vol 67 (4) ◽  
pp. 3741-3749
Author(s):  
Nermin Mahmoud ◽  
Asmaa Metwally
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Nallu Gomes Lima Hironaka ◽  
Juliana Quintino Trizzi ◽  
Natália Miwa Yoshida ◽  
Jaime Aparecido Cury ◽  
Cinthia Pereira Machado Tabchoury ◽  
...  

1998 ◽  
Vol 2 (3) ◽  
pp. 143-146 ◽  
Author(s):  
W. Geurtsen ◽  
P. Bubeck ◽  
G. Leyhausen ◽  
F. Garcia-Godoy

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Daniela Dellosso Cibim ◽  
Miki Taketomi Saito ◽  
Priscila Alves Giovani ◽  
Ana Flávia Sanches Borges ◽  
Vanessa Gallego Arias Pecorari ◽  
...  

The aim of this study was to assess the performance of glass ionomer cement (GIC) added with TiO2nanotubes. TiO2nanotubes [3%, 5%, and 7% (w/w)] were incorporated into GIC’s (Ketac Molar EasyMix™) powder component, whereas unblended powder was used as control. Physical-chemical-biological analysis included energy dispersive spectroscopy (EDS), surface roughness (SR), Knoop hardness (SH), fluoride-releasing analysis, cytotoxicity, cell morphology, and extracellular matrix (ECM) composition. Parametric or nonparametric ANOVA were used for statistical comparisons (α≤0.05). Data analysis revealed that EDS only detected Ti at the 5% and 7% groups and that GIC’s physical-chemical properties were significantly improved by the addition of 5% TiO2as compared to 3% and GIC alone. Furthermore, regardless of TiO2concentration, no significant effect was found on SR, whereas GIC-containing 7% TiO2presented decreased SH values. Fluoride release lasted longer for the 5% and 7% TiO2groups, and cell morphology/spreading and ECM composition were found to be positively affected by TiO2at 5%. In conclusion, in the current study, nanotechnology incorporated in GIC affected ECM composition and was important for the superior microhardness and fluoride release, suggesting its potential for higher stress-bearing site restorations.


2003 ◽  
Vol 82 (10) ◽  
pp. 829-832 ◽  
Author(s):  
C.M. Carey ◽  
M. Spencer ◽  
R.J. Gove ◽  
F.C. Eichmiller

Fluoride is added to many dental restorative materials, including glass-ionomer cements, for the specific purpose of leaching fluoride into the surrounding tissues to provide secondary caries inhibition. During the caries process, an acidic environment attacks the dental tissues as well as the glass-ionomer cement. We hypothesized that pH significantly affects the rate of release of fluoride from the glass-ionomer cement. A continuous-flow fluoride-measuring system that monitors the amount of fluoride released over time was used to determine the release of fluoride from a resin-modified glass-ionomer cement (KetacFil®). The results show that the release rate began with a fast burst of fluoride which quickly diminished to low levels in 3 days. Under neutral pH conditions, the rate of fluoride release at 72 hrs was significantly slower than at pH 4.


Sign in / Sign up

Export Citation Format

Share Document